

Graph Theory

3

• The Problem:

• Can we construct a graph in which there do not exist intersecting edges???

• Planar Graphs

- A **plane graph** is a graph that any two of its edges are only adjunct on their endpoints.
- A graph is called **planar** or **embeddable in the plane**, if is isomorphic to a plane graph.

• Planar Graphs

- Jordan Curve: A continuous line in the plane that does not intersect itself.
- Closed Jordan Curve: A Jordan curve whose two ends coincide.
- Theorem 1 (Jordan):

Given a closed Jordan curve L and its two points v_i and v_j , then the Jordan curve joining these points,

- a) either is inside L,
- b) either outside *L*,
- c) or intersects L in some points other than v_i and v_j .

• Planar Graphs

- Given a planar graph G and a point x of the layer, we call **region** or **face** or the **window** of G containing the x, the set of points of the plane that can be joined to x through a Jordan curve that does not intersects the edges of G.
- **r (or f)** denotes the number of regions of a planar graph
- The **boundary** of a region is the subgraph affected by the edges and vertices adjacent to the region (i.e., the edges surrounding the region).

Boundary						
Region	Edges	Vertices				
r_1	$(v_1, v_2), (v_2, v_3), (v_3, v_1)$	v_1, v_2, v_3				
r_2	$(v_1, v_2), (v_2, v_4), (v_4, v_1)$	v_1, v_2, v_4				
<i>r</i> ₃	$(v_1, v_3), (v_3, v_4), (v_4, v_1)$	v_1, v_3, v_4				
r_4	$(v_2, v_3), (v_3, v_4), (v_4, v_2)$	v_2, v_3, v_4				

• Planar Graphs

- Given a planar graph *G* and a point *x* of the layer, we call **region** or **face** or the **window** of *G* containing the *x*, the set of points of the plane that can be joined to *x* through a Jordan curve that does not intersects the edges of *G*.
- r (or f) denotes the number of regions of a planar graph
- The **boundary** of a region is the subgraph affected by the edges and vertices adjacent to the region (i.e., the edges surrounding the region).

Boundary						
Region	Edges	Vertices				
r_1	$(v_1, v_2), (v_2, v_3), (v_3, v_1)$	v_1, v_2, v_3				
<i>r</i> ₂	$(v_1, v_2), (v_2, v_4), (v_4, v_1)$	v_1, v_2, v_4				
r_3	$(v_1, v_3), (v_3, v_4), (v_4, v_1)$	v_1, v_3, v_4				
r_4	$(v_2, v_3), (v_3, v_4), (v_4, v_2)$	v_2, v_3, v_4				

• The region r_2 is called, exterior or infinite or unbounded or outer.

• Planar Graphs

- Given a planar graph G and a point x of the layer, we call **region** or **face** or the **window** of G containing the x, the set of points of the plane that can be joined to x through a Jordan curve that does not intersects the edges of G.
- r (or f) denotes the number of regions of a planar graph
- The **boundary** of a region is the subgraph affected by the edges and vertices adjacent to the region (i.e., the edges surrounding the region).
- Outer-planar is called a graph if all of its vertices belong in one region.
 - The edges of such a graph lie either on top or in a circle and they don't intersect.
 - Each outer-planar graph is planar but the reverse is not true (eg K_4 is planar but not outer-planar).

• Euler & Kuratowski Theorems

- Euler's Theorem proves that despite the way we embed a graph in the plane, the number of regions remains constant and is given by the Euler's polyhedron formula.
- Theorem 2 (Euler, 1752):

If G is a connected plane graph, then it holds that:

V	E	r	R - E + V
1	0	1	2

• Euler & Kuratowski Theorems

- Euler's Theorem proves that despite the way we embed a graph in the plane, the number of regions remains constant and is given by the Euler's polyhedron formula.
- Theorem 2 (Euler, 1752):

If G is a connected plane graph, then it holds that:

$$n+r=m+2$$

• Euler & Kuratowski Theorems

- Euler's Theorem proves that despite the way we embed a graph in the plane, the number of regions remains constant and is given by the Euler's polyhedron formula.
- Theorem 2 (Euler, 1752):

If G is a connected plane graph, then it holds that:

V	<i>E</i>	r	R - E + V
1	0	1	2
2	1	1	2
3	2	1	2

• Euler & Kuratowski Theorems

- Euler's Theorem proves that despite the way we embed a graph in the plane, the number of regions remains constant and is given by the Euler's polyhedron formula.
- Theorem 2 (Euler, 1752):

If G is a connected plane graph, then it holds that:

V	E	r	R - E + V
1	0	1	2
2	1	1	2
3	2	1	2
4	3	1	2

• Euler & Kuratowski Theorems

- Euler's Theorem proves that despite the way we embed a graph in the plane, the number of regions remains constant and is given by the Euler's polyhedron formula.
- Theorem 2 (Euler, 1752):

If G is a connected plane graph, then it holds that:

5 54	1 4	1.
· alle ·	11.1.11	
	a start for	14
- Saidistan	MAX AX	1.1
		C. P. g. A.
	Sec. Sec. Sec.	hill.
and the second second		all the th
-110 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10.	COLUMN TO STATE	in the second
	The Part of the second	Harris
	AL MAR	ALL A
and an and a star	Ales and	
and a second second	1. 1. 1. 1. 1. 1.	
State and a state	可是的时间	
and a star a star		A Statement of
and the second	11 2 1 1	ENN.
T and the	TON WALL	The former
1	X X & Y &	
se the	11 1 1 2	N
		1 · · ·
	1	

V	E	r	R - E + V
1	0	1	2
2	1	1	2
3	2	1	2
4	3	1	2
4	4	2	2

• Euler & Kuratowski Theorems

- Euler's Theorem proves that despite the way we embed a graph in the plane, the number of regions remains constant and is given by the Euler's polyhedron formula.
- Theorem 2 (Euler, 1752):

If G is a connected plane graph, then it holds that:

V	E	r	R - E + V
1	0	1	2
2	1	1	2
3	2	1	2
4	3	1	2
4	4	2	2
5	5	2	2

• Euler & Kuratowski Theorems

- Euler's Theorem proves that despite the way we embed a graph in the plane, the number of regions remains constant and is given by the Euler's polyhedron formula.
- Theorem 2 (Euler, 1752):

If G is a connected plane graph, then it holds that:

o Euler & Kuratowski Theorems

- Euler's Theorem proves that despite the way we embed a graph in the plane, the number of regions remains constant and is given by the Euler's polyhedron formula.
- Theorem 2 (Euler, 1752):

If G is a connected plane graph, then it holds that:

o Euler & Kuratowski Theorems

- Euler's Theorem proves that despite the way we embed a graph in the plane, the number of regions remains constant and is given by the Euler's polyhedron formula.
- Theorem 2 (Euler, 1752):

If G is a connected plane graph, then it holds that:

V	E	r	R - E + V
1	0	1	2
2	1	1	2
3	2	1	2
4	3	1	2
4	4	2	2
5	5	2	2
6	6	2	2
7	7	2	2
8	8	2	2

o Euler & Kuratowski Theorems

- Euler's Theorem proves that despite the way we embed a graph in the plane, the number of regions remains constant and is given by the Euler's polyhedron formula.
- Theorem 2 (Euler, 1752):

If G is a connected plane graph, then it holds that:

V	<i>E</i>	r	R - E + V
1	0	1	2
2	1	1	2
3	2	1	2
4	3	1	2
4	4	2	2
5	5	2	2
6	6	2	2
7	7	2	2
8	8	2	2
8	9	3	2

o Euler & Kuratowski Theorems

- Euler's Theorem proves that despite the way we embed a graph in the plane, the number of regions remains constant and is given by the Euler's polyhedron formula.
- Theorem 2 (Euler, 1752):

If G is a connected plane graph, then it holds that:

V	E	r	R - E + V
1	0	1	2
2	1	1	2
3	2	1	2
4	3	1	2
4	4	2	2
5	5	2	2
6	6	2	2
7	7	2	2
8	8	2	2
8	9	3	2
8	10	4	2

• Euler & Kuratowski Theorems

- Euler's Theorem proves that despite the way we embed a graph in the plane, the number of regions remains constant and is given by the Euler's polyhedron formula.
- Theorem 2 (Euler, 1752):

If G is a connected plane graph, then it holds that:

n+r=m+2

V	<i>E</i>	r	R - E + V
1	0	1	2
2	1	1	2
3	2	1	2
4	3	1	2
4	4	2	2
5	5	2	2
6	6	2	2
7	7	2	2
8	8	2	2
8	9	3	2
8	10	4	2
8	11	5	2

23

• Euler & Kuratowski Theorems

- Euler's Theorem proves that despite the way we embed a graph in the plane, the number of regions remains constant and is given by the Euler's polyhedron formula.
- Theorem 2 (Euler, 1752):

If G is a connected plane graph, then it holds that:

n+r=m+2

V	<i>E</i>	r	R - E + V
1	0	1	2
2	1	1	2
3	2	1	2
4	3	1	2
4	4	2	2
5	5	2	2
6	6	2	2
7	7	2	2
8	8	2	2
8	9	3	2
8	10	4	2
8	11	5	2
8	12	6	2

24

• Euler & Kuratowski Theorems

- Euler's Theorem proves that despite the way we embed a graph in the plane, the number of regions remains constant and is given by the Euler's polyhedron formula.
- Theorem 2 (Euler, 1752):

If G is a connected plane graph, then it holds that:

n+r=m+2

Inductively on the number of edges...

• Euler & Kuratowski Theorems

- Euler's Theorem proves that despite the way we embed a graph in the plane, the number of regions remains constant and is given by the Euler's polyhedron formula.
- Theorem 2 (Euler, 1752):

If G is a connected plane graph, then it holds that:

- If m = 0, then n = 1 (as G is connected), and r = 1.
- Let that the Theorem holds for a connected graph of m 1 edges.
- In this graph we draw a new edge *e*, and three cases may occur:

• Euler & Kuratowski Theorems

- Euler's Theorem proves that despite the way we embed a graph in the plane, the number of regions remains constant and is given by the Euler's polyhedron formula.
- Theorem 2 (Euler, 1752):

If G is a connected plane graph, then it holds that:

- If m = 0, then n = 1 (as G is connected), and r = 1.
- Let that the Theorem holds for a connected graph of m 1 edges.
- In this graph we draw a new edge *e*, and three cases may occur:
 - 1. The new edge *e* is a loop and hence a new region is formed, as the number of vertices remains constant.

• Euler & Kuratowski Theorems

- Euler's Theorem proves that despite the way we embed a graph in the plane, the number of regions remains constant and is given by the Euler's polyhedron formula.
- Theorem 2 (Euler, 1752):

If G is a connected plane graph, then it holds that:

- If m = 0, then n = 1 (as G is connected), and r = 1.
- Let that the Theorem holds for a connected graph of m 1 edges.
- In this graph we draw a new edge *e*, and three cases may occur:
 - 2. The new edge *e* connects two existing vertices, and hence, a new region is formed on a constant number of edges, and

• Euler & Kuratowski Theorems

- Euler's Theorem proves that despite the way we embed a graph in the plane, the number of regions remains constant and is given by the Euler's polyhedron formula.
- Theorem 2 (Euler, 1752):

If G is a connected plane graph, then it holds that:

- If m = 0, then n = 1 (as G is connected), and r = 1.
- Let that the Theorem holds for a connected graph of m 1 edges.
- In this graph we draw a new edge *e*, and three cases may occur:
 - 3. The new edge e is incident on only one vertex of G, and hence a new vertex is constructed as the number of regions remains the same.

• Euler & Kuratowski Theorems

- Euler's Theorem proves that despite the way we embed a graph in the plane, the number of regions remains constant and is given by the Euler's polyhedron formula.
- Theorem 2 (Euler, 1752):

If G is a connected plane graph, then it holds that:

- If m = 0, then n = 1 (as G is connected), and r = 1.
- Let that the Theorem holds for a connected graph of m 1 edges.
- In this graph we draw a new edge *e*, and three cases may occur:
 - In any case, the Theorem is correct.

• Euler & Kuratowski Theorems

- Euler's Theorem proves that despite the way we embed a graph in the plane, the number of regions remains constant and is given by the Euler's polyhedron formula.
- Theorem 2 (Euler, 1752):

If G is a connected plane graph, then it holds that:

• Euler & Kuratowski Theorems

- Euler's Theorem proves that despite the way we embed a graph in the plane, the number of regions remains constant and is given by the Euler's polyhedron formula.
- Corollary:

If G is a plane graph of k components, then it holds that:

n+r=m+k+1

• Euler & Kuratowski Theorems

- Euler's Theorem proves that despite the way we embed a graph in the plane, the number of regions remains constant and is given by the Euler's polyhedron formula.
- Corollary:

If G is a plane graph of k components, then it holds that:

n+r=m+k+1

• Apply the Euler's formula on each component including only once the outer region.

• Euler & Kuratowski Theorems

- Euler's Theorem proves that despite the way we embed a graph in the plane, the number of regions remains constant and is given by the Euler's polyhedron formula.
- Corollary:

If G is a plane graph of k components, then it holds that:

n+r=m+k+1

- Apply the Euler's formula on each component including only once the outer region.
- $n_1 + r_1 = m_1 + 2$ $n_2 + r_2 = m_2 + 2$... $n_k + r_k = m_k + 2$ • ⇒ n + r + (k - 1) = m + 2k

• Euler & Kuratowski Theorems

- Euler's Theorem proves that despite the way we embed a graph in the plane, the number of regions remains constant and is given by the Euler's polyhedron formula.
- Corollary:

If G is a plane graph of k components, then it holds that:

$$n+r = m+k+1$$

- Apply the Euler's formula on each component including only once the outer region.
- n₁ + r₁ = m₁ + 2 n₂ + r₂ = m₂ + 2 ... n_k + r_k = m_k + 2
 ⇒ n + r + (k - 1) = m + 2k ⇒ n + r = m + k + 1

o Euler & Kuratowski Theorems

- Euler's Theorem proves that despite the way we embed a graph in the plane, the number of regions remains constant and is given by the Euler's polyhedron formula.
- Corollary:

If G is a plane graph of k components, then it holds that:

n+r = m+k+1

• Apply the Euler's formula on each component including only once the outer region.

- Euler's Theorem proves that despite the way we embed a graph in the plane, the number of regions remains constant and is given by the Euler's polyhedron formula.
- In Outer-planar graphs all of the vertices belong in one region.
 - Is it possible to add edges on plane graphs and the graph remain plane?

- Euler's Theorem proves that despite the way we embed a graph in the plane, the number of regions remains constant and is given by the Euler's polyhedron formula.
- In Outer-planar graphs all of the vertices belong in one region.
 - Is it possible to add edges on plane graphs and the graph remain plane?

- Euler's Theorem proves that despite the way we embed a graph in the plane, the number of regions remains constant and is given by the Euler's polyhedron formula.
- In Outer-planar graphs all of the vertices belong in one region.
 - Is it possible to add edges on plane graphs and the graph remain plane?

- Euler's Theorem proves that despite the way we embed a graph in the plane, the number of regions remains constant and is given by the Euler's polyhedron formula.
- In Outer-planar graphs all of the vertices belong in one region.
 - Is it possible to add edges on plane graphs and the graph remain plane?

- Euler's Theorem proves that despite the way we embed a graph in the plane, the number of regions remains constant and is given by the Euler's polyhedron formula.
- In Outer-planar graphs all of the vertices belong in one region.
 - Is it possible to add edges on plane graphs and the graph remain plane?

- Euler's Theorem proves that despite the way we embed a graph in the plane, the number of regions remains constant and is given by the Euler's polyhedron formula.
- In Outer-planar graphs all of the vertices belong in one region.
 - Is it possible to add edges on plane graphs and the graph remain plane?

- Euler's Theorem proves that despite the way we embed a graph in the plane, the number of regions remains constant and is given by the Euler's polyhedron formula.
- In Outer-planar graphs all of the vertices belong in one region.
 - Is it possible to add edges on plane graphs and the graph remain plane?
 Such a process may proceed until a "specific point"...
 - Maximal plane graph, is called the graph G if for each pair x, y of discrete non adjacent vertices of G, the graph G + (x, y) is not plane. But ... until where ...
 - If there exist region surrounded by cycle of length 4, then a new edge may be added and the graph remain plane.
 - As long as there exist regions surrounded by cycles of length greater than 3 there can be added edges retaining the planarity of the graph.
 Therefore, the maximal plane graphs are called triangulated.

- Euler's Theorem proves that despite the way we embed a graph in the plane, the number of regions remains constant and is given by the Euler's polyhedron formula.
- In Outer-planar graphs all of the vertices belong in one region.
 - Is it possible to add edges on plane graphs and the graph remain plane?
 Such a process may proceed until a "specific point"...
 - Maximal plane graph, is called the graph G if for each pair x, y of discrete non adjacent vertices of G, the graph G + (x, y) is not plane.
 - Similarly are defined the **Maximal outer planar graphs**, that are produced after the triangulation of a polygon, while every maximal plane graph occurs after the triangulation of the sphere.

o Euler & Kuratowski Theorems

- Euler's Theorem proves that despite the way we embed a graph in the plane, the number of regions remains constant and is given by the Euler's polyhedron formula.
- Lemma (Handshake Lemma for Plane Graphs):

For each connected plane graph G it holds that:

$$2m = \sum_{i=1}^{r=m-n+2} d(r_i) = \sum_{j=D(G)}^{D(G)} j n(j)$$

where $d(r_i)$ is the degree of the region r_i , i.e. the number of the edges surrounding the i-th region, while n(j) denotes the number of vertices of degree j.

• Each edges counts twice in each regions and each vertex.

o Euler & Kuratowski Theorems

- Euler's Theorem proves that despite the way we embed a graph in the plane, the number of regions remains constant and is given by the Euler's polyhedron formula.
- Corollary :

If G is a connected maximum planar graph of $n \ge 3$ edges it holds that:

m = 3n - 6

- Let *r* be the number of areas of the graph.
- At a maximum plane graph there is: $d(r_i) = 3$ for each area.
- The Lemma therefore states:

 $2m = 3 + 3 + \dots + 3(r = m - n + 2 \text{ times}) \Rightarrow 2m = 3(m - n + 2) \Rightarrow m = 3n - 6$

o Euler & Kuratowski Theorems

- Euler's Theorem proves that despite the way we embed a graph in the plane, the number of regions remains constant and is given by the Euler's polyhedron formula.
- Corollary :

For every connected planar graph with $n \ge 3$ vertices it holds that:

 $m \leq 3n - 6$

- Let *r* be the number of areas of the graph.
- In a simple plane graph, $d(r_i) \ge 3$ applies to each area r_i .
- The Lemma therefore states:

 $2m \ge 3 + 3 + \dots + 3 (r = m - n + 2 times) \Rightarrow 2m \ge 3 (m - n + 2) \Rightarrow m \le 3n - 6$

o Euler & Kuratowski Theorems

- Euler's Theorem proves that despite the way we embed a graph in the plane, the number of regions remains constant and is given by the Euler's polyhedron formula.
- Corollary :

For every connected plane bipartite graph G with $n \ge 3$, it holds that:

 $m \leq 2n-4$

- Let *r* be the number of areas of the graph.
- On a plane bipartite it holds that, $d(r_i) \ge 4$ for each region r_i .
- The Lemma therefore states:

 $2m \ge 4 + 4 + \dots + 4 (r = m - n + 2 times) \Rightarrow 2m \ge 4 (m - n + 2) \Rightarrow m \le 2n - 4$

o Euler & Kuratowski Theorems

- Euler's Theorem proves that despite the way we embed a graph in the plane, the number of regions remains constant and is given by the Euler's polyhedron formula.
- Corollary :

Each plane graph contains at least one vertex v of degree $d(v) \leq 5$

- Suppose that all vertices have degree ≥ 6 and that the graph has n vertices and m edges.
- It holds that $m \leq 3n 6$ or $2m \leq 6n 12$ [1]
- From the Handshake Lemma we know that the sum the degrees of the vertices of a graph are 2m.
- Since $d(v) \ge 6$ for every v it holds $2m \ge 6n$ [2]
- From [1] and [2] $\Rightarrow 6n \leq 2m \leq 6n 12$, that is a contradiction.

o Euler & Kuratowski Theorems

• Euler's Theorem proves that despite the way we embed a graph in the plane, the number of regions remains constant and is given by the Euler's polyhedron formula.

• Theorem 3 :

The graph K_5 is non plane.

- If K_5 was plane, then from the Corollary it would hold that $m \leq 3n 6$
- Now it holds that $1 = |E(K_5)| \le 3(5) 6 = 9$, that is a contradiction.

• Theorem 4 :

The graph $K_{3,3}$ is non plane.

- Let that $K_{3,3}$ is plane graph...
- Since the graph does not contain triangular regions it is implied that every regions surrounded by polygons of at least 4 vertices.
- Then, it holds that $4r \le 2m = 18$, but it should hold $r \le 4$.
- Euler's formula $\rightarrow 2 = n m + r \le 6 9 + 4 = 1$, that is a contradiction

o Euler & Kuratowski Theorems

- K_5 is the non-plane graph with the smallest number of vertices and $K_{3.3}$ the non-plane graph with the smallest number of edges.
- Two graphs are called **homomorphic** if one can occur from the other with one or more subdivisions of its edges.
- Theorem 5 (Kuratowski 1930):

A graph is plane if it does not contain subgraphs homomorphic to K_5 and $K_{3.3}$.

• Theorem 6 (Wagner 1937, Harray & Tutte 1965):

A graph is plane if it does not contain subgraphs contractible to K_5 and $K_{3.3}$.

- contraction is its reverse procedure of edge subdivision
- A graph is embeddable on the surface of a sphere, iff it is embeddable in the plane.

• Embedding Graphs to Multiple Layers

• Which is the minimum number of levels required for the embed of a graph?

• Embedding Graphs to Multiple Layers

- Which is the minimum number of levels required for the embed of a graph?
 - Thickness t(G), defines the minimum number of levels required for the integration of a graph ("how much non-planar is a graph?").
 - A graph G is decomposed to r > 2 planar graphs: $G = H_1 \cup H_2 \cup \cdots \cup H_r$
 - The thickness of a plane graph is t = 1
 - $t(K_{3,3}) = t(K_5) = t(K_8) = 2$
 - Corollary:

The thickness of a connected graph $G, n \geq 3$ satisfies the equations:

$$t(G) \ge \left[\frac{m}{3n-6}\right] = \left\lfloor\frac{m+3n-7}{3n-6}\right\rfloor$$

• Embedding Graphs to Multiple Layers

- Which is the minimum number of levels required for the embed of a graph?
 - Thickness t(G), defines the minimum number of levels required for the embed of a graph ("how much non-planar is a graph?").
 - A graph G is decomposed to r > 2 planar graphs: $G = H_1 \cup H_2 \cup \cdots \cup H_r$
 - The thickness of a plane graph is t = 1

•
$$t(K_{3,3}) = t(K_5) = t(K_8) = 2$$

• Corollary:

The thickness of a bipartite graph G of n vertices and m edges satisfies the equation:

$$t(G) \ge \left[\frac{m}{2n-4}\right]$$

• Embedding Graphs to Multiple Layers

- Which is the minimum number of levels required for the embed of a graph?
 - Thickness t(G), defines the minimum number of levels required for the embed of a graph ("how much non-planar is a graph?").
 - A graph G is decomposed to r > 2 planar graphs: $G = H_1 \cup H_2 \cup \cdots \cup H_r$
 - The thickness of a plane graph is t = 1

•
$$t(K_{3,3}) = t(K_5) = t(K_8) = 2$$

• Corollary:

The thickness of a complete graph K_n , of $n \ge 3$ vertices satisfies the equation:

$$t(K_n) \ge \left\lceil \frac{n+7}{6} \right\rceil$$

• Embedding Graphs to Multiple Layers

- Which is the minimum number of levels required for the embed of a graph?
 - Thickness t(G), defines the minimum number of levels required for the embed of a graph ("how much non-planar is a graph?").
 - A graph G is decomposed to r > 2 planar graphs: $G = H_1 \cup H_2 \cup \cdots \cup H_r$
 - The thickness of a plane graph is t = 1
 - $t(K_{3,3}) = t(K_5) = t(K_8) = 2$
 - Theorem 7:

The thickness of a complete graph K_n , of $n \ge 3$ vertices satisfies the equation:

$$t(K_n) = \begin{cases} \left\lfloor \frac{n+7}{6} \right\rfloor & \text{if } n \neq 9,10\\ 3 & \text{if } n = 9,10 \end{cases}$$

• Embedding Graphs to Multiple Layers

- Which is the minimum number of levels required for the embed of a graph?
 - Thickness t(G), defines the minimum number of levels required for the embed of a graph ("how much non-planar is a graph?").
 - A graph G is decomposed to r > 2 planar graphs: $G = H_1 \cup H_2 \cup \cdots \cup H_r$
 - The thickness of a plane graph is t = 1

•
$$t(K_{3,3}) = t(K_5) = t(K_8) = 2$$

• Corollary:

The thickness of a complete bipartite graph $K_{m,n}$, satisfies the equation:

$$t(K_{m,n}) \ge \left[\frac{mn}{2(m+n-2)}\right]$$

• Embedding Graphs to Multiple Layers

- Which is the minimum number of levels required for the embed of a graph?
 - Thickness t(G), defines the minimum number of levels required for the embed of a graph ("how much non-planar is a graph?").
 - Coarseness $\xi(G)$, defines the maximum number of non-planar subgraphs that consist of foreign sets of edges.
- Which is the minimum number of edge sections of a non-planar graph?
 - Crossing number *cr*(*G*), defines the minimum number of sections of a graph per plane.
 - Crossing number of a plane graph is cr = 0
 - $cr(K_{3,3}) = cr(K_5) = 1$
 - Theorem 8:

For the crossing number of the complete connected graph K_6 , it holds:

 $cr(K_6) = 3$

• Embedding Graphs to Multiple Layers

- Which is the minimum number of levels required for the embed of a graph?
 - Thickness t(G), defines the minimum number of levels required for the embed of a graph ("how much non-planar is a graph?").
 - Coarseness $\xi(G)$, defines the maximum number of non-planar subgraphs that consist of foreign sets of edges.
- Which is the minimum number of edge sections of a non-planar graph?
 - Crossing number cr(G), defines the minimum number of sections of a graph per plane.
 - Crossing number of a plane graph is cr = 0
 - $cr(K_{3,3}) = cr(K_5) = 1$
 - Theorem 9:

The crossing number of the complete connected graph K_n , and the complete bipartite graph K_{n_1,n_2} satisfy the equations:

$$cr(K_n) \le \frac{1}{4} \left\lfloor \frac{n}{2} \right\rfloor \left\lfloor \frac{n-1}{2} \right\rfloor \left\lfloor \frac{n-2}{2} \right\rfloor \left\lfloor \frac{n-3}{2} \right\rfloor$$

• Embedding Graphs to Multiple Layers

- Which is the minimum number of levels required for the embed of a graph?
 - Thickness t(G), defines the minimum number of levels required for the embed of a graph ("how much non-planar is a graph?").
 - Coarseness $\xi(G)$, defines the maximum number of non-planar subgraphs that consist of foreign sets of edges.
- Which is the minimum number of edge sections of a non-planar graph?
 - Crossing number cr(G), defines the minimum number of sections of a graph per plane.
 - Crossing number of a plane graph is cr = 0
 - $cr(K_{3,3}) = cr(K_5) = 1$
 - Theorem 9:

The crossing number of the complete connected graph K_n , and the complete bipartite graph K_{n_1,n_2} satisfy the equations:

$$cr(K_{n_1,n_2}) \le \frac{1}{4} \left\lfloor \frac{n_1}{2} \right\rfloor \left\lfloor \frac{n_1 - 1}{2} \right\rfloor \left\lfloor \frac{n_2}{2} \right\rfloor \left\lfloor \frac{n_2 - 1}{2} \right\rfloor$$

• Embedding Graphs to Multiple Layers

- Which is the minimum number of levels required for the embed of a graph?
 - Thickness t(G), defines the minimum number of levels required for the embed of a graph ("how much non-planar is a graph?").
 - Coarseness $\xi(G)$, defines the maximum number of non-planar subgraphs that consist of foreign sets of edges.
- Which is the minimum number of edge sections of a non-planar graph?
 - Crossing number cr(G), defines the minimum number of sections of a graph per plane.
- <u>How distant is graph *G* from planarity?</u>
 - Splitting number *s*(*G*), defines the minimum number of splits required to make a graph plane.

• Embedding Graphs to Multiple Layers

- Which is the minimum number of levels required for the embed of a graph?
 - Thickness t(G), defines the minimum number of levels required for the embed of a graph ("how much non-planar is a graph?").
 - Coarseness $\xi(G)$, defines the maximum number of non-planar subgraphs that consist of foreign sets of edges.
- Which is the minimum number of edge sections of a non-planar graph?
 - Crossing number *cr*(*G*), defines the minimum number of sections of a graph per plane.
- <u>How distant is graph *G* from planarity?</u>
 - Splitting number *s*(*G*), defines the minimum number of splits required to make a graph plane.

• Embedding Graphs to Multiple Layers

- Which is the minimum number of levels required for the embed of a graph?
 - Thickness t(G), defines the minimum number of levels required for the embed of a graph ("how much non-planar is a graph?").
 - Coarseness $\xi(G)$, defines the maximum number of non-planar subgraphs that consist of foreign sets of edges.
- Which is the minimum number of edge sections of a non-planar graph?
 - Crossing number cr(G), defines the minimum number of sections of a graph per plane.
- How distant is graph G from planarity?
 - Splitting number *s*(*G*), defines the minimum number of splits required to make a graph plane.
 - Theorem 10:

The split number of K_n , K_{n_1,n_2} satisfy the equations:

$$s(K_n) = \left\lceil \frac{(n-3)(n-4)}{6} \right\rceil \quad ,n \ge 10$$

• Embedding Graphs to Multiple Layers

- Which is the minimum number of levels required for the embed of a graph?
 - Thickness t(G), defines the minimum number of levels required for the embed of a graph ("how much non-planar is a graph?").
 - Coarseness $\xi(G)$, defines the maximum number of non-planar subgraphs that consist of foreign sets of edges.
- Which is the minimum number of edge sections of a non-planar graph?
 - Crossing number cr(G), defines the minimum number of sections of a graph per plane.
- How distant is graph G from planarity?
 - Splitting number *s*(*G*), defines the minimum number of splits required to make a graph plane.
 - Theorem 10:

The split number of K_n , K_{n_1,n_2} satisfy the equations:

$$s(K_{n_1,n_2}) = \left[\frac{(n_1-2)(n_2-2)}{2}\right], n_1, n_2 \ge 2$$

• Embedding Graphs to Multiple Layers

- Embed to other surfaces ...
 - Embed into a "torus".

• A "torus" is homomorphic to a "handle".

• Moebius Band.

• Embedding Graphs to Multiple Layers

- K_5 is embedded into the torus, while $K_{3,3}$ is embedded in the Band of Moebius.
- Torus can be regarded as a sphere with a handle, so in the general case we have a sphere with multiple handles.
- The number of handles becomes a **genus**.
- A surface has **genus g**, if it is homomorphic to a sphere with *g* handles.
- The sphere has g=0, while torus has g=1.
- A graph that can be embedded on a surface of genus g but not on a surface of genus g 1, is called a graph of genus g.
- Theorem 11:

If G is a connected graph then it holds:

$$n+r=m+2-2g$$

• Embedding Graphs to Multiple Layers

- K_5 is embedded into the torus, while $K_{3,3}$ is embedded in the Band of Moebius.
- Torus can be regarded as a sphere with a handle So in the general case we have a sphere with multiple handles.
- The number of handles becomes a genus.
- A surface has **genus g**, if it is homomorphic to a sphere with *g* handles.
- The sphere has g=0, while torus has g=1.
- A graph that can be embedded on a surface of genus g but not on a surface of genus g 1, is called a graph of genus g.
- Theorem 12:

The genus g(G) is not greater that the cross number cr(G) of a graph G: $g(G) \leq cr(G)$

• Embedding Graphs to Multiple Layers

- K_5 is embedded into the torus, while $K_{3,3}$ is embedded in the Band of Moebius.
- Torus can be regarded as a sphere with a handle So in the general case we have a sphere with multiple handles.
- The number of handles becomes a **genus**.
- A surface has **genus g**, if it is homomorphic to a sphere with *g* handles.
- The sphere has g=0, while torus has g=1.
- A graph that can be embedded on a surface of genus g but not on a surface of genus g 1, is called a graph of genus g.
- Corollary:

The genus g(G) of a graph $G n \ge 4$ satisfies the relation:

$$g(G) \ge \left\lceil \frac{m-3n}{6} + 1 \right\rceil$$

• Embedding Graphs to Multiple Layers

- K_5 is embedded into the torus, while $K_{3,3}$ is embedded in the Band of Moebius.
- Torus can be regarded as a sphere with a handle So in the general case we have a sphere with multiple handles.
- The number of handles becomes a genus.
- A surface has **genus g**, if it is homomorphic to a sphere with *g* handles.
- The sphere has g=0, while torus has g=1.
- A graph that can be embedded on a surface of genus g but not on a surface of genus g 1, is called a graph of genus g.
- Theorem 13:

The genus g(G) of a complete graph K_n $n \ge 4$ satisfies the relation:

$$g(K_n) = \left\lceil \frac{(n-3)(n-4)}{12} \right\rceil$$

• Embedding Graphs to Multiple Layers

- K_5 is embedded into the torus, while $K_{3,3}$ is embedded in the Band of Moebius.
- Torus can be regarded as a sphere with a handle So in the general case we have a sphere with multiple handles.
- The number of handles becomes a **genus**.
- A surface has **genus g**, if it is homomorphic to a sphere with *g* handles.
- The sphere has g=0, while torus has g=1.
- A graph that can be embedded on a surface of genus g but not on a surface of genus g 1, is called a graph of genus g.
- Corollary:

The genus g(G) of a complete bipartite graph K_{n_1,n_2} satisfies the relation:

$$g(K_{n_1,n_2}) = \left[\frac{(n_1 - 2)(n_2 - 42)}{4}\right]$$

o Duality

• Geometric Dual:

- In each region of G a vertex of G^* is inserted.
- Two vertices of G^* are joined by one edge for each common edge of the corresponding regions of G.
- For each bridge of G it is inserted at G^* a loop at the top corresponding to the regions surrounding the bridge.
- Every edge of G^* intersects with only one edge of G.

• Duality

• Geometric Dual:

- In each region of G a vertex of G^* is inserted.
- Two vertices of G^* are joined by one edge for each common edge of the corresponding regions of G.
- For each bridge of G it is inserted at G^* a loop at the top corresponding to the regions surrounding the bridge.
- Every edge of G^* intersects with only one edge of G.

• Combinatorial Dual:

• A graph \tilde{G} is called combinatorial dual (or, abstract dual) of a graph G if and only if there exists unambiguous match between their edges, such that the edges of a cycle of \tilde{G} correspond to a vertex cut set of G.

• Theorem 14:

Every plane graph G has a corresponding plane combinatorial dual graph G^* .

• Duality

• Geometric Dual:

- In each region of G a vertex of G^* is inserted.
- Two vertices of G^* are joined by one edge for each common edge of the corresponding regions of G.
- For each bridge of G it is inserted at G^* a loop at the top corresponding to the regions surrounding the bridge.
- Every edge of G^* intersects with only one edge of G.

• Combinatorial Dual:

• A graph \tilde{G} is called combinatorial dual (or, abstract dual) of a graph G if and only if there exists unambiguous match between their edges, such that the edges of a cycle of \tilde{G} correspond to a vertex cut set of G.

• Corollary:

If the graph G has a has a geometric dual graph G^* , then it holds:

 $(G^*)^* = G$

• Duality

• Geometric Dual:

- In each region of G a vertex of G^* is inserted.
- Two vertices of G^* are joined by one edge for each common edge of the corresponding regions of G.
- For each bridge of G it is inserted at G^* a loop at the top corresponding to the regions surrounding the bridge.
- Every edge of G^* intersects with only one edge of G.

• Combinatorial Dual:

• A graph \tilde{G} is called combinatorial dual (or, abstract dual) of a graph G if and only if there exists unambiguous match between their edges, such that the edges of a cycle of \tilde{G} correspond to a vertex cut set of G.

• Theorem 15:

A graph G is plane if and only if it has a combinatorial dual graph.

• Duality

• Geometric Dual:

- In each region of G a vertex of G^* is inserted.
- Two vertices of G^* are joined by one edge for each common edge of the corresponding regions of G.
- For each bridge of G it is inserted at G^* a loop at the top corresponding to the regions surrounding the bridge.
- Every edge of G^* intersects with only one edge of G.

• Combinatorial Dual:

- A graph \tilde{G} is called combinatorial dual (or, abstract dual) of a graph G if and only if there exists unambiguous match between their edges, such that the edges of a cycle of \tilde{G} correspond to a vertex cut set of G.
- Self Dual:

A graph homomorphic to its dual is called self-dual.

o Other Planarity Criteria

- Except for the Euler theorem and the Kuratowski theorem there are two other criteria regarding the planarity of a graph.
- A Complete Set of Basic Circuits is a set of circles where:
 - Each circle of the graph can be expressed as a ring sum of some or all of the cycles of the set *S*, and
 - No circle of the set S can be expressed as a ring sum of other cycles inside S.
- Theorem 16 (MacLane 1937):

A graph G is plane if only if there is a Complete Set of Basic Circuits S, such that no edges of the graph G appear in more than two cycles of S.

• The three theorems (Euler, Kuratowski, McLane) do not give effective algorithms either plane representations

o Other Planarity Criteria

- Let graph G(V, E) and subgraph $G_1(V_1, E_1) \subseteq G$.
- A piece, P, of G(V, E) is called **relative** to subgraph $G_1(V_1, E_1)$ if:
 - either, an edge $e = (u, v) \in E$, where $e \notin E_1$, and $u, v \in V_1$
 - or, a connected component of graph $G G_1$ plus any edges incident on the vertices of the component
- The edges of P that belong also in G_1 are called **contact vertices**.
- If a piece has two or more contact vertices is called **segment**, or, **bridge**.
- If C is a cycle of graph G, then the embed of C partitions the plane into two regions, one inner and one outer.
- Two segments are called **incompatible** if at least two of their edges are crossed when placed in the same region of the plane defined by cycle *C*.

• Other Planarity Criteria

- The **auxiliary** graph has vertices corresponding to incompatible segments and edges joining the vertices if the segments are incompatible.
 - The embed of pieces that are not segments is easy because they only have one point of contact with graph.
 - For the embed of segments it is constructed an auxiliary graph P(C)
 - This graph has as many vertices as the segments of the graph that are relative to subgraph G_1 and edges joining the vertices if parts are incompatible.

• Theorem 17 (MacLane 1937):

• Planarity Detection Algorithm (DMP)

- Algorithm of Demoucron, Malgrange, Peruiset 1964 (DMP)
- Pre-processing:
 - 1. If n < 5, m < 9, then the graph is plane
 - 2. If m > 3n 6, then the graph is non-plane
 - 3. consider connected graphs
 - 4. consider 2 –connected graphs (blocks)
 - 5. consider simple graphs
 - 6. produce uniform graphs without vertices of degree 2

• Planarity Detection Algorithm (DMP)

- Algorithm of Demoucron, Malgrange, Peruiset 1964 (DMP)
- Pre-processing:
 - 1. If n < 5, m < 9, then the graph is plane
 - 2. If m > 3n 6, then the graph is non-plane
 - 3. consider connected graphs
 - > If the graph is not connected then test each component seperately
 - 4. consider 2 –connected graphs (blocks)
 - > If the graph has a cut-vertex it is adequate to check if the two blocks are plane.
 - 5. consider simple graphs
 - > If there exist loops or parallel edges, ignore them
 - 6. produce uniform graphs without vertices of degree 2
 - contract to homomorphic graph with smaller number of vertices

• Planarity Detection Algorithm (DMP)

- Algorithm of Demoucron, Malgrange, Peruiset 1964 (DMP)
- Strategy of DMP: find a sequence embeddible subgraphs (progressively larger), starting from a circle and adding segments.
 - Starting from the cycle, segments are created.
 - For each segment we find the number of regions that it can be embedded.
 - If a segment is embedded into only one region, then it has priority.
 - In the case of a tie, we choose at random.
 - The process is repeated at most m n + 1 times.

84

• Planarity Detection Algorithm (DMP)

- Algorithm of Demoucron, Malgrange, Peruiset 1964 (DMP)
- Strategy of DMP: find a sequence embeddible subgraphs (progressively larger), starting from a circle and adding segments.
 - Starting from the cycle, segments are created.
 - For each segment we find the number of regions that it can be embedded.
 - If a segment is embedded into only one region, then it has priority.
 - In the case of a tie, we choose at random.
 - The process is repeated at most m n + 1 times.
- The DMP algorithm has complexity $O(n^4)$, however, there is also the Hopcroft-Tarjan (1974) algorithm with O(n) complexity which is based on DFS, but is complex.