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PLANARITY

O Planar Graphs

* A plane graph is a graph that any two of its edges are only adjunct on their
endpoints.

® A graph is called planar or embeddable in the plane, if is isomorphic to a
plane graph.




PLANARITY

O Planar Graphs

® Jordan Curve: A continuous line in the plane that does not intersect itself.
* Closed Jordan Curve: A Jordan curve whose two ends coincide.

* Theorem 1 (Jordan):

Given a closed Jordan curve L and its two points v; and vj, then the Jordan
curve joining these points,

a)

either is inside L,

b) either outside L,
) orintersects L in some points other than v; and v;.
4 N\ A4 )
vl ._ _________________________ .vj “\\1]_1:. .//’/
Yj
\_ J \_ J




PLANARITY

O Planar Graphs

* Given a planar graph G and a point x of the layer, we call region or face ot
the window of G containing the x, the set of points of the plane that can be
joined to x through a Jordan curve that does not intersects the edges of G.

* r (or f) denotes the number of regions of a planar graph

* The boundary of a region is the subgraph affected by the edges and vertices
adjacent to the region (i.e., the edges surrounding the region).

p

Region Edges Vertices

§) 4] (v1,v2), (V2,v3), (V3, V1) Vq1,Vp, U3

) (v1,v2), (V2, Va), (Va, V1) V1, Vg, Uy
A 13 (v1,v3), (V3, V4), (Va, V1) V1,V3,V,
Uy = %)

T4 (v2,v3), (3, V), (V4, V2) Uy, V3, Uy




PLANARITY

O Planar Graphs

* Given a planar graph G and a point x of the layer, we call region or face ot
the window of G containing the x, the set of points of the plane that can be
joined to x through a Jordan curve that does not intersects the edges of G.

* r (or f) denotes the number of regions of a planar graph

* The boundary of a region is the subgraph affected by the edges and vertices
adjacent to the region (i.e., the edges surrounding the region).

p

Region Edges Vertices
rg ] (v1,v2), (V2,v3), (V3, V1) VU1,Vy, V3
) (v1,v2), (V2, Va), (Va, V1) V1, Vg, Uy
A 3 (v1,v3), (V3, V4), (Va, V1) V1,V3,V,
Uy . %)
7. (v2,V3), (3, Vs), (V4, V2) V5, Ua, U,
4 2 V3, Vg

® The region 1y is called, exterior or infinite or unbounded or outer.




PLANARITY

O Planar Graphs

* Given a planar graph G and a point x of the layer, we call region or face ot
the window of G containing the x, the set of points of the plane that can be
joined to x through a Jordan curve that does not intersects the edges of G.

* r (or f) denotes the number of regions of a planar graph

* The boundary of a region is the subgraph affected by the edges and vertices
adjacent to the region (i.e., the edges surrounding the region).

* Outer-planar is called a graph if all of its vertices belong in one region.

o The edges of such a graph lie either on top or in a circle and they don't
intersect.

o Each outer-planar graph is planar but the reverse is not true (eg Ky is
planar but not outer-planar).

-
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PLANARITY

O Euler & Kuratowski Theorems

* Euler’s Theorem proves that despite the way we embed a graph in the
plane, the number of regions remains constant and is given by the Euler’s

polyhedron formula.

* Theorem 2 (Euler, 1752):

If G is a connected plane graph, then it holds that: #=2] 1

n+r=m+2
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O Euler & Kuratowski Theorems

* Euler’s Theorem proves that despite the way we embed a graph in the
plane, the number of regions remains constant and is given by the Euler’s

polyhedron formula.

* Theorem 2 (Euler, 1752):

If G is a connected plane graph, then it holds that: --
ntr=mts --l_
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O Euler & Kuratowski Theorems AN

* Euler’s Theorem proves that despite the way we embed a graph in the
plane, the number of regions remains constant and is given by the Euler’s

polyhedron formula.

* Theorem 2 (Euler, 1752):

If G is a connected plane graph, then it holds that: = I +]7

n+r=m+2

2 1 1 2
sz 2
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O Euler & Kuratowski Theorems

* Euler’s Theorem proves that despite the way we embed a graph in the
plane, the number of regions remains constant and is given by the Euler’s

polyhedron formula.

* Theorem 2 (Euler, 1752):

If G is a connected plane graph, then it holds that: = I +]7

n+r=m+2 PR 5

3 2 1 2
ERE R
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O Euler & Kuratowski Theorems

* Euler’s Theorem proves that despite the way we embed a graph in the
plane, the number of regions remains constant and is given by the Euler’s

polyhedron formula.

* Theorem 2 (Euler, 1752):

If G is a connected plane graph, then it holds that: = I +]7

n+r=m-+2 PR 5
3 2 1 2
4 3 1 2
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O Euler & Kuratowski Theorems

* Euler’s Theorem proves that despite the way we embed a graph in the
plane, the number of regions remains constant and is given by the Euler’s
polyhedron formula.

* Theorem 2 (Euler, 1752):

If G is a connected plane graph, then it holds that: #=2] 1

1 2
n+r=m-+2 PR 5
S R 2
4 3 1 2
4 2

4 2
5 52 2




PLANARITY

O Euler & Kuratowski Theorems

* Euler’s Theorem proves that despite the way we embed a graph in the
plane, the number of regions remains constant and is given by the Euler’s
polyhedron formula.

* Theorem 2 (Euler, 1752):

If G is a connected plane graph, then it holds that:
n+r=m-+ 2
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PLANARITY

O Euler & Kuratowski Theorems

* Euler’s Theorem proves that despite the way we embed a graph in the
plane, the number of regions remains constant and is given by the Euler’s
polyhedron formula.

* Theorem 2 (Euler, 1752):

If G is a connected plane graph, then it holds that:
n+r=m-+ 2
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PLANARITY

O Euler & Kuratowski Theorems

* Euler’s Theorem proves that despite the way we embed a graph in the
plane, the number of regions remains constant and is given by the Euler’s
polyhedron formula.

* Theorem 2 (Euler, 1752):

If G is a connected plane graph, then it holds that:
n+r=m-+ 2
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PLANARITY

O Euler & Kuratowski Theorems

* Euler’s Theorem proves that despite the way we embed a graph in the
plane, the number of regions remains constant and is given by the Euler’s
polyhedron formula.

* Theorem 2 (Euler, 1752):

If G is a connected plane graph, then it holds that:
n+r=m-+ 2

0 1

1
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PLANARITY

O Euler & Kuratowski Theorems

* Euler’s Theorem proves that despite the way we embed a graph in the
plane, the number of regions remains constant and is given by the Euler’s
polyhedron formula.

* Theorem 2 (Euler, 1752):

If G is a connected plane graph, then it holds that: #=2] 1

1 2
n+r=m-+2 PR 5

S R 2

4 3 1 2

4 4 2 2

5 5 2 2

6 6 2 2

7| 9 |e 2

8 8 2 2

8 9 3 2

'8 104 2
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O Euler & Kuratowski Theorems

* Euler’s Theorem proves that despite the way we embed a graph in the
plane, the number of regions remains constant and is given by the Euler’s
polyhedron formula.

* Theorem 2 (Euler, 1752):

If G is a connected plane graph, then it holds that: #=2] 1

1 2
n+r=m-+2 PR 5
S R 2
4 3 1 2
4 4 2 2
5 5 2 2
6 6 2 2
7| 9 |e 2
8 8 2 2
8 9 3 2
8 10 4 2




PLANARITY

O Euler & Kuratowski Theorems

* Euler’s Theorem proves that despite the way we embed a graph in the
plane, the number of regions remains constant and is given by the Euler’s
polyhedron formula.

* Theorem 2 (Euler, 1752):

If G is a connected plane graph, then it holds that: #=2] 1

n+r=m+2 "
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PLANARITY

O Euler & Kuratowski Theorems

* Euler’s Theorem proves that despite the way we embed a graph in the
plane, the number of regions remains constant and 1s given by the Euler’s

polyhedron formula.
* Theorem 2 (Euler, 1752):

If G is a connected plane graph, then it holds that:
n+r=m-+ 2

Inductively on the number of edges...
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O Euler & Kuratowski Theorems

* Euler’s Theorem proves that despite the way we embed a graph in the
plane, the number of regions remains constant and 1s given by the Euler’s
polyhedron formula.

* Theorem 2 (Euler, 1752):

If G is a connected plane graph, then it holds that:
n+r=m-+ 2

o If m=0,thenn =1 (as G is connected), and r = 1.
o Let that the Theorem holds for a connected graph of m — 1 edges.

o In this graph we draw a new edge e, and three cases may occur:
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O Euler & Kuratowski Theorems

* Euler’s Theorem proves that despite the way we embed a graph in the
plane, the number of regions remains constant and 1s given by the Euler’s
polyhedron formula.

* Theorem 2 (Euler, 1752):

If G is a connected plane graph, then it holds that:
n+r=m-+ 2

o If m=0,thenn =1 (as G is connected), and r = 1.
o Let that the Theorem holds for a connected graph of m — 1 edges.
o In this graph we draw a new edge e, and three cases may occur:

1. The new edge e is a loop and hence a new region 1s formed, as the
number of vertices remains constant.
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O Euler & Kuratowski Theorems

* Euler’s Theorem proves that despite the way we embed a graph in the
plane, the number of regions remains constant and 1s given by the Euler’s
polyhedron formula.

* Theorem 2 (Euler, 1752):

If G is a connected plane graph, then it holds that:
n+r=m-+ 2

o If m=0,thenn =1 (as G is connected), and r = 1.
o Let that the Theorem holds for a connected graph of m — 1 edges.
o In this graph we draw a new edge e, and three cases may occur:

2. The new edge e connects two existing vertices, and hence, a new
region is formed on a constant number of edges, and




PLANARITY

O Euler & Kuratowski Theorems

* Euler’s Theorem proves that despite the way we embed a graph in the
plane, the number of regions remains constant and 1s given by the Euler’s
polyhedron formula.

* Theorem 2 (Euler, 1752):

If G is a connected plane graph, then it holds that:
n+r=m-+ 2

o If m=0,thenn =1 (as G is connected), and r = 1.
o Let that the Theorem holds for a connected graph of m — 1 edges.
o In this graph we draw a new edge e, and three cases may occur:

3. The new edge e is incident on only one vertex of G, and hence a new
vertex 1s constructed as the number of regions remains the same.




PLANARITY

O Euler & Kuratowski Theorems

* Euler’s Theorem proves that despite the way we embed a graph in the
plane, the number of regions remains constant and 1s given by the Euler’s
polyhedron formula.

* Theorem 2 (Euler, 1752):

If G is a connected plane graph, then it holds that:
n+r=m-+ 2

o If m=0,thenn =1 (as G is connected), and r = 1.
o Let that the Theorem holds for a connected graph of m — 1 edges.
o In this graph we draw a new edge e, and three cases may occur:

 In any case, the Theorem is correct.
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O Euler & Kuratowski Theorems

* Euler’s Theorem proves that despite the way we embed a graph in the
plane, the number of regions remains constant and 1s given by the Euler’s

polyhedron formula.

* Theorem 2 (Euler, 1752):

If G is a connected plane graph, then it holds that:
n+r=m-+ 2




PLANARITY

O Euler & Kuratowski Theorems

* Euler’s Theorem proves that despite the way we embed a graph in the
plane, the number of regions remains constant and 1s given by the Euler’s

polyhedron formula.

* Corollary:

If G is a plane graph of k components, then it holds that:
n+r=m+k+1




PLANARITY

O Euler & Kuratowski Theorems " T

* Euler’s Theorem proves that despite the way we embed a graph in the
plane, the number of regions remains constant and 1s given by the Euler’s

polyhedron formula.
* Corollary:

If G is a plane graph of k components, then it holds that:
n+r=m+k+1

o Apply the Euler’s formula on each component including only once the

outer region.
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O Euler & Kuratowski Theorems

* Euler’s Theorem proves that despite the way we embed a graph in the
plane, the number of regions remains constant and 1s given by the Euler’s
polyhedron formula.

* Corollary:

If G is a plane graph of k components, then it holds that:
n+r=m+k+1

o Apply the Euler’s formula on each component including only once the
outer region.

on1+7"1=m1+2
n2+T2:m2+2

nk+7"k mk+2

o =n+r+(k—1)=m+ 2k




PLANARITY

O Euler & Kuratowski Theorems

* Euler’s Theorem proves that despite the way we embed a graph in the
plane, the number of regions remains constant and 1s given by the Euler’s
polyhedron formula.

* Corollary:

If G is a plane graph of k components, then it holds that:
n+r=m+k+1

o Apply the Euler’s formula on each component including only once the
outer region.

o Nq + rn=m + 2
n, + rp, = m, + 2
ng + T, = Mmy + 2

o =>n+r+(k—1)]:m+2k >n+r=m+k+1 @
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O Euler & Kuratowski Theorems

* Euler’s Theorem proves that despite the way we embed a graph in the
plane, the number of regions remains constant and 1s given by the Euler’s
polyhedron formula.

* Corollary:

If G is a plane graph of k components, then it holds that:
n+r=m+k+1

o Apply the Euler’s formula on each component including only once the

r=ri+ry+-+r,—(k—1)

outer region.

on1+7"1=m1+2
n2+T2:m2+2

nk+7"k

o =>n+r+(k—1)]:m+2k




PLANARITY

O Euler & Kuratowski Theorems

* Euler’s Theorem proves that despite the way we embed a graph in the
plane, the number of regions remains constant and 1s given by the Euler’s
polyhedron formula.

® In Outer-planar graphs all of the vertices belong in one region.

o Is it possible to add edges on plane graphs and the graph remain plane?
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O Euler & Kuratowski Theorems

* Euler’s Theorem proves that despite the way we embed a graph in the
plane, the number of regions remains constant and 1s given by the Euler’s
polyhedron formula.

® In Outer-planar graphs all of the vertices belong in one region.

o Is it possible to add edges on plane graphs and the graph remain plane?
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PLANARITY

O Euler & Kuratowski Theorems

* Euler’s Theorem proves that despite the way we embed a graph in the
plane, the number of regions remains constant and 1s given by the Euler’s
polyhedron formula.

® In Outer-planar graphs all of the vertices belong in one region.

o Is it possible to add edges on plane graphs and the graph remain plane?
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O Euler & Kuratowski Theorems

* Euler’s Theorem proves that despite the way we embed a graph in the
plane, the number of regions remains constant and 1s given by the Euler’s
polyhedron formula.

® In Outer-planar graphs all of the vertices belong in one region.

o Is it possible to add edges on plane graphs and the graph remain plane?
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O Euler & Kuratowski Theorems

* Euler’s Theorem proves that despite the way we embed a graph in the
plane, the number of regions remains constant and 1s given by the Euler’s
polyhedron formula.

® In Outer-planar graphs all of the vertices belong in one region.

o Is it possible to add edges on plane graphs and the graph remain plane?
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O Euler & Kuratowski Theorems

* Euler’s Theorem proves that despite the way we embed a graph in the
plane, the number of regions remains constant and 1s given by the Euler’s
polyhedron formula.

® In Outer-planar graphs all of the vertices belong in one region.

o Is it possible to add edges on plane graphs and the graph remain plane?
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O Euler & Kuratowski Theorems

* Euler’s Theorem proves that despite the way we embed a graph in the
plane, the number of regions remains constant and 1s given by the Euler’s
polyhedron formula.

® In Outer-planar graphs all of the vertices belong in one region.
o Is it possible to add edges on plane graphs and the graph remain plane?
Such a process may proceed until a “specific point”...

= Maximal plane graph, is called the graph G if for each pair x,y of
discrete non adjacent vertices of G, the graph G + (x,y) is not plane.
But ... until where ...

= If there exist region surrounded by cycle of length 4, then a new edge
may be added and the graph remain plane.

= As long as there exist regions surrounded by cycles of length greater

than 3 there can be added edges retaining the planarity of the graph. @

Therefore, the maximal plane graphs are called triangulated.
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O Euler & Kuratowski Theorems

* Euler’s Theorem proves that despite the way we embed a graph in the
plane, the number of regions remains constant and 1s given by the Euler’s
polyhedron formula.

® In Outer-planar graphs all of the vertices belong in one region.
o Is it possible to add edges on plane graphs and the graph remain plane?
Such a process may proceed until a “specific point”...

= Maximal plane graph, is called the graph G if for each pair x,y of
discrete non adjacent vertices of G, the graph G + (x,y) is not plane.

= Similarly are defined the Maximal outer planar graphs, that are
produced after the triangulation of a polygon, while every maximal
plane graph occurs after the triangulation of the sphere.
/‘ ....... .

N
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O Euler & Kuratowski Theorems

* Euler’s Theorem proves that despite the way we embed a graph in the
plane, the number of regions remains constant and 1s given by the Euler’s
polyhedron formula.

* Lemma (Handshake Lemma for Plane Graphs):

For each connected plane graph G it holds that:
2m = Y7 -1 nred () = Zj:D(G)] n(j)

where d(71;) is the degree of the region 17, i.e. the number of the edges
surrounding the i-th region, while n(j) denotes the number of vertices of

degree j.

o FEach edges counts twice in each regions and each vertex.
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O Euler & Kuratowski Theorems

* Euler’s Theorem proves that despite the way we embed a graph in the
plane, the number of regions remains constant and 1s given by the Euler’s
polyhedron formula.

* Corollary :

If G is a connected maximum planar graph of n = 3 edges it holds that:

m = 3n-6
o Let T be the number of areas of the graph.
o Ata maximum plane graph there is: d (1;) = 3 for each area.

o The Lemma therefore states:

2m=3+3+--+3(r=m-n+2times)=>2m=3(m-n+2)=>m = 3n-6




PLANARITY

O Euler & Kuratowski Theorems

* Euler’s Theorem proves that despite the way we embed a graph in the
plane, the number of regions remains constant and 1s given by the Euler’s
polyhedron formula.

* Corollary :

For every connected planar graph with n = 3 vertices it holds that:
m<3n-6

o Let T be the number of areas of the graph.
o In a simple plane graph, d(1;) = 3 applies to each atrea 1;.

o The Lemma therefore states:
2m =23 +3 4+ + 3 =m-n+ 2times)=>2m = 3(m-n + 2)=>m < 3n- 6
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O Euler & Kuratowski Theorems

* Euler’s Theorem proves that despite the way we embed a graph in the
plane, the number of regions remains constant and 1s given by the Euler’s
polyhedron formula.

* Corollary :

For every connected plane bipartite graph G with n = 3, it holds that:
m< 2n—4

o Let r be the number of areas of the graph.
o On a plane bipartite it holds that, d(7;) = 4 for each region 1;.

o The Lemma therefore states:
2m =24+ 4+ + 4 =m-n+ 2times)=>2m =2 4(m-n + 2)=>m < 2n- 4
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O Euler & Kuratowski Theorems

* Euler’s Theorem proves that despite the way we embed a graph in the

plane, the number of regions remains constant and 1s given by the Euler’s

polyhedron formula.

* Corollary :

Each plane graph contains at least one vertex v of degree d(v) <5

O

Suppose that all vertices have degree = 6 and that the graph has
n vertices and m edges.

Itholds that m < 3n-6or2m < 6n- 12 [1]

From the Handshake Lemma we know that the sum the degrees of the
vertices of a graph are 2m.

Since d(v) = 6 for every vit holds 2Zm > 6n [2]

From [1] and [2] ® 6n < 2m < 6n -12, that is a contradiction.
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O Euler & Kuratowski Theorems

* Euler’s Theorem proves that despite the way we embed a graph in the
plane, the number of regions remains constant and 1s given by the Euler’s
polyhedron formula.

* Theorem 3:

The graph K is non plane.
o If K5 was plane, then from the Corollary it would hold thatm < 3n — 6
o Now it holds that 1 = |E(K5)| < 3(5) — 6 = 9, that is a contradiction.

* Theorem 4 :

The graph K3 3 is non plane.
o Let that K3 3 is plane graph...
o Since the graph does not contain triangular regions it is implied that every

regions surrounded by polygons of at least 4 vertices.

o Then, it holds that 4r < 2m = 18, but it should hold r < 4.
o Eulet’s formula» 2 =n—m+1r < 6 -9+ 4 =1, that is a contradiction @
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O Euler & Kuratowski Theorems

* Kj is the non-plane graph with the smallest number of vertices and K33 the
non-plane graph with the smallest number of edges.

* Two graphs are called homomorphic if one can occur from the other with
one or more subdivisions of its edges.

* Theorem 5 (Kuratowski 1930):

A graph is plane if it does not contain subgraphs homomorphic to Kg and
K3.3'

* Theorem 6 (Wagner 1937, Harray & Tutte 1965):
A graph is plane if it does not contain subgraphs contractible to K5 and K3 3.

o contraction is its reverse procedure of edge subdivision

A graph is embeddable on the surface of a sphere, iff it is embeddable in the

plane. e




PLANARITY

0 Embedding Graphs to Multiple Layers

® Which is the minimum number of levels required for the embed of a graph?




PLANARITY

0 Embedding Graphs to Multiple Layers

® Which is the minimum number of levels required for the embed of a graph?

o Thickness t(G), defines the minimum number of levels required for the
integration of a graph (“how much non-planar is a graph?”).

= A graph G is decomposed to > 2 planar graphs: G = H; U H, U ---U H,.
= The thickness of a plane graphist = 1
= t(K33) = t(Ks) = t(Kg) = 2

o Corollary:

The thickness of a connected graph G,n = 3 satisfies the equations:

m+3n—7|

t(G) = [3:16] ~ [ 3n-6




PLANARITY

0 Embedding Graphs to Multiple Layers

® Which is the minimum number of levels required for the embed of a graph?

o Thickness t(G), defines the minimum number of levels required for the
embed of a graph (“how much non-planar is a graph?”).

= A graph G is decomposed to > 2 planar graphs: G = H; U H, U ---U H,.
= The thickness of a plane graphist = 1
= t(K33) = t(Ks) = t(Kg) = 2

o Corollary:

The thickness of a bipartite graph G of n vertices and m edges satisfies the

equation:

(0 2 [75]
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0 Embedding Graphs to Multiple Layers

® Which is the minimum number of levels required for the embed of a graph?

o Thickness t(G), defines the minimum number of levels required for the
embed of a graph (“how much non-planar is a graph?”).

= A graph G is decomposed to > 2 planar graphs: G = H; U H, U ---U H,.
= The thickness of a plane graphist = 1
= t(K33) = t(Ks) = t(Kg) = 2

o Corollary:
The thickness of a complete graph K,, of n = 3 vertices satisfies the
equation:
n+7
t(Kn) = 7]
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0 Embedding Graphs to Multiple Layers

® Which is the minimum number of levels required for the embed of a graph?

o Thickness t(G), defines the minimum number of levels required for the
embed of a graph (“how much non-planar is a graph?”).

= A graph G is decomposed to > 2 planar graphs: G = H; U H, U ---U H,.
= The thickness of a plane graphist = 1
= t(K33) = t(Ks) = t(Kg) = 2

o Theorem 7:

The thickness of a complete graph K,, of n = 3 vertices satisfies the

equation:

| if n#9,10
6
t(Kn) —

3 ifn=0910
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0 Embedding Graphs to Multiple Layers

® Which is the minimum number of levels required for the embed of a graph?

o Thickness t(G), defines the minimum number of levels required for the
embed of a graph (“how much non-planar is a graph?”).

= A graph G is decomposed to > 2 planar graphs: G = H; U H, U ---U H,.
= The thickness of a plane graphist = 1
= t(K33) = t(Ks) = t(Kg) = 2

o Corollary:

The thickness of a complete bipartite graph K, , satisfies the
equation:

t(Km,n) = [ﬁ]
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0 Embedding Graphs to Multiple Layers

® Which 1s the minimum number of levels required for the embed of a graph?

o Thickness t(G), defines the minimum number of levels required for the
embed of a graph (“how much non-planar is a graph?”).

o Coarseness §(G), defines the maximum number of non-planar subgraphs
that consist of foreign sets of edges.

® Which is the minimum number of edge sections of a non-planar graph?

o Crossing number ¢r(G), defines the minimum number of sections of a
graph per plane.
= Crossing number of a plane graphis cr = 0
= cr(Kz3) =cr(Ks) =1
o Theorem 8:
For the crossing number of the complete connected graph K, it holds:

cr(Kg) =3
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0 Embedding Graphs to Multiple Layers

® Which 1s the minimum number of levels required for the embed of a graph?

o Thickness t(G), defines the minimum number of levels required for the
embed of a graph (“how much non-planar is a graph?”).

o Coarseness §(G), defines the maximum number of non-planar subgraphs
that consist of foreign sets of edges.

® Which is the minimum number of edge sections of a non-planar graph?

o Crossing number ¢r(G), defines the minimum number of sections of a

graph per plane.

= Crossing number of a plane graphis cr = 0
= cr(Kz3) =cr(Ks) =1
o Theorem 9:
The crossing number of the complete connected graph K, and the

complete bipartite graph Ky, ;. satisfy the equations:

1,72

o < o




PLANARITY

0 Embedding Graphs to Multiple Layers

® Which 1s the minimum number of levels required for the embed of a graph?

o Thickness t(G), defines the minimum number of levels required for the
embed of a graph (“how much non-planar is a graph?”).

o Coarseness §(G), defines the maximum number of non-planar subgraphs
that consist of foreign sets of edges.

® Which is the minimum number of edge sections of a non-planar graph?

o Crossing number ¢r(G), defines the minimum number of sections of a
graph per plane.
= Crossing number of a plane graphis cr = 0
= cr(Kz3) =cr(Ks) =1
o Theorem 9:
The crossing number of the complete connected graph K, and the

complete bipartite graph Ky, ;. satisfy the equations:

1,72
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PLANARITY

0 Embedding Graphs to Multiple Layers

® Which 1s the minimum number of levels required for the embed of a graph?

o Thickness t(G), defines the minimum number of levels required for the
embed of a graph (“how much non-planar is a graph?”).

o Coarseness §(G), defines the maximum number of non-planar subgraphs
that consist of foreign sets of edges.

® Which is the minimum number of edge sections of a non-planar graph?

o Crossing number ¢r(G), defines the minimum number of sections of a

graph per plane.

* How distant is graph G from planarity?

o Splitting number S(G), defines the minimum number of splits required to
make a graph plane.
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0 Embedding Graphs to Multiple Layers

® Which 1s the minimum number of levels required for the embed of a graph?

o Thickness t(G), defines the minimum number of levels required for the
embed of a graph (“how much non-planar is a graph?”).

o Coarseness §(G), defines the maximum number of non-planar subgraphs
that consist of foreign sets of edges.

® Which is the minimum number of edge sections of a non-planar graph?

o Crossing number ¢r(G), defines the minimum number of sections of a

graph per plane.

* How distant is graph G from planarity?

o Splitting number S(G), defines the minimum number of splits required to

make a graph plane.
®
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PLANARITY

0 Embedding Graphs to Multiple Layers

® Which 1s the minimum number of levels required for the embed of a graph?

o Thickness t(G), defines the minimum number of levels required for the
embed of a graph (“how much non-planar is a graph?”).

o Coarseness §(G), defines the maximum number of non-planar subgraphs
that consist of foreign sets of edges.

® Which is the minimum number of edge sections of a non-planar graph?

o Crossing number ¢r(G), defines the minimum number of sections of a

graph per plane.

* How distant is graph G from planarity?

o Splitting number S(G), defines the minimum number of splits required to
make a graph plane.

o Theorem 10:
The split number of Ky, Ky, 5, satisty the equations: @

s(K) = [ ez 10




PLANARITY

0 Embedding Graphs to Multiple Layers

® Which 1s the minimum number of levels required for the embed of a graph?

o Thickness t(G), defines the minimum number of levels required for the
embed of a graph (“how much non-planar is a graph?”).

o Coarseness §(G), defines the maximum number of non-planar subgraphs
that consist of foreign sets of edges.

® Which is the minimum number of edge sections of a non-planar graph?

o Crossing number ¢r(G), defines the minimum number of sections of a

graph per plane.

* How distant is graph G from planarity?

o Splitting number S(G), defines the minimum number of splits required to

make a graph plane.
o Theorem 10:
The split number of Ky, Ky, 5, satisty the equations: @
(ng — 2) (n, — 2)
S(Kn1,n2 [ ny,ny, = 2




PLANARITY

0 Embedding Graphs to Multiple Layers

* Embed to other surfaces ...

o Embed into a “torus”.

o A “torus” is homomorphic to a “handle”.

o Moebius Band.

@&
-




PLANARITY

0 Embedding Graphs to Multiple Layers

* Ks is embedded into the torus, while K33 is embedded in the
Band of Moebius.

* Torus can be regarded as a sphere with a handle, so in the general case we have a
sphere with multiple handles.

® The number of handles becomes a genus.
® A surface has genus g, if it is homomorphic to a sphere with g handles.
® The sphere has g=0, while torus has g=1.

® A graph that can be embedded on a surface of genus g but not on a surface of
genus g — 1, is called a graph of genus g.

* Theorem 11:

If G is a connected graph then it holds:

n+r=m+2-—2g @
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0 Embedding Graphs to Multiple Layers

* Ks is embedded into the torus, while K33 is embedded in the
Band of Moebius.

® Torus can be regarded as a sphere with a handle So in the general case we have a
sphere with multiple handles.

® The number of handles becomes a genus.
® A surface has genus g, if it is homomorphic to a sphere with g handles.
® The sphere has g=0, while torus has g=1.

® A graph that can be embedded on a surface of genus g but not on a surface of
genus g — 1, is called a graph of genus g.

* Theorem 12:

The genus g(G) is not greater that the cross number ¢r(G)of a graph G:

g(G) < cr(6) 0
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0 Embedding Graphs to Multiple Layers
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Ks is embedded into the torus, while K33 is embedded in the
Band of Moebius.

Torus can be regarded as a sphere with a handle So in the general case we have a
sphere with multiple handles.

The number of handles becomes a genus.
A surface has genus g, if it is homomorphic to a sphere with g handles.
The sphere has g=0, while torus has g=1.

A graph that can be embedded on a surface of genus g but not on a surface of
genus g — 1, is called a graph of genus g.

Corollary:
The genus g(G) of a graph G n = 4 satisfies the relation:

0= o
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0 Embedding Graphs to Multiple Layers

* Ks is embedded into the torus, while K33 is embedded in the
Band of Moebius.

® Torus can be regarded as a sphere with a handle So in the general case we have a
sphere with multiple handles.

® The number of handles becomes a genus.
® A surface has genus g, if it is homomorphic to a sphere with g handles.
® The sphere has g=0, while torus has g=1.

® A graph that can be embedded on a surface of genus g but not on a surface of
genus g — 1, is called a graph of genus g.

* Theorem 13:

The genus g(G) of a complete graph K, n > 4 satisfies the relation:

_[=3)n-9 @
g(Ky) = [ T }




PLANARITY

0 Embedding Graphs to Multiple Layers

* Ks is embedded into the torus, while K33 is embedded in the
Band of Moebius.

® Torus can be regarded as a sphere with a handle So in the general case we have a
sphere with multiple handles.

® The number of handles becomes a genus.
® A surface has genus g, if it is homomorphic to a sphere with g handles.
® The sphere has g=0, while torus has g=1.

® A graph that can be embedded on a surface of genus g but not on a surface of
genus g — 1, is called a graph of genus g.

* Corollary:

The genus g(G) of a complete bipartite graph Ky, ., satisfies the relation:

— 2 — 42
o[22 o




PLANARITY

O Duality

* Geometric Dual:

o In each region of G a vertex of G™ is inserted.

o Two vertices of G* are joined by one edge for each common edge of the
corresponding regions of G.

o For each bridge of G it is inserted at G* a loop at the top corresponding to
the regions surrounding the bridge.

o Every edge of G" intersects with only one edge of G.




PLANARITY

O Duality

* Geometric Dual:

o In each region of G a vertex of G™ is inserted.

o Two vertices of G* are joined by one edge for each common edge of the
corresponding regions of G.

o For each bridge of G it is inserted at G* a loop at the top corresponding to
the regions surrounding the bridge.

o Every edge of G" intersects with only one edge of G.

* Combinatorial Dual:

o A graph G is called combinatorial dual (or, abstract dual) of a graph G if and
only if there exists unambiguous match between their edges, such that the
edges of a cycle of G correspond to a vertex cut set of G.

* Theorem 14:
Every plane graph G has a corresponding plane combinatorial dual graph G ™. a




PLANARITY

O Duality

* Geometric Dual:

o In each region of G a vertex of G™ is inserted.

o Two vertices of G* are joined by one edge for each common edge of the

corresponding regions of G.

o For each bridge of G it is inserted at G* a loop at the top corresponding to

the regions surrounding the bridge.
o Every edge of G" intersects with only one edge of G.

* Combinatorial Dual:

o A graph G is called combinatorial dual (or, abstract dual) of a graph G if and
only if there exists unambiguous match between their edges, such that the

edges of a cycle of G correspond to a vertex cut set of G.
* Corollary:

If the graph G has a has a geometric dual graph G¥, then it holds:
(G*) =G




PLANARITY

O Duality

* Geometric Dual:

o In each region of G a vertex of G™ is inserted.

o Two vertices of G* are joined by one edge for each common edge of the

corresponding regions of G.

o For each bridge of G it is inserted at G* a loop at the top corresponding to

the regions surrounding the bridge.
o Every edge of G" intersects with only one edge of G.

* Combinatorial Dual:

o A graph G is called combinatorial dual (or, abstract dual) of a graph G if and
only if there exists unambiguous match between their edges, such that the

edges of a cycle of G correspond to a vertex cut set of G.
* Theorem 15:

A graph G is plane if and only if it has a combinatorial dual graph.
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O Duality

* Geometric Dual:

o In each region of G a vertex of G™ is inserted.

o Two vertices of G* are joined by one edge for each common edge of the
corresponding regions of G.

o For each bridge of G it is inserted at G* a loop at the top corresponding to
the regions surrounding the bridge.

o Every edge of G" intersects with only one edge of G.

* Combinatorial Dual:

o A graph G is called combinatorial dual (or, abstract dual) of a graph G if and
only if there exists unambiguous match between their edges, such that the
edges of a cycle of G correspond to a vertex cut set of G.

* Self Dual:

A graph homomorphic to its dual is called self-dual.




PLANARITY

O Other Planarity Criteria

Except for the Euler theorem and the Kuratowski theorem there are two other
criteria regarding the planarity of a graph.

* A Complete Set of Basic Circuits is a set of circles where:

o Each circle of the graph can be expressed as a ring sum of some or all of the
cycles of the set S, and

o No circle of the set S can be expressed as a ring sum of other cycles inside S.

* Theorem 16 (MacLane 1937):

A graph G is plane if only if there is a Complete Set of Basic Circuits S, such
that no edges of the graph G appear in more than two cycles of S.

® The three theorems (Euler, Kuratowski, Mclane) do not give effective

algorithms either plane representations




PLANARITY

O Other Planarity Criteria
Let graph G (V, E') and subgraph G{(V1,E1) € G.

A piece, P, of G(V,E) is called relative to subgraph G (V1, E7) if:
o cither,anedgee = (u,v) € E, wheree € E{,andu, v €I

o of, a connected component of graph G - Gq plus any edges incident on the
vertices of the component

The edges of P that belong also in G are called contact vertices.
* If a piece has two or more contact vertices is called segment, or, bridge.

* If Cis a cycle of graph G, then the embed of C partitions the plane into two
regions, one inner and one outer.

* Two segments are called incompatible if at least two of their edges are crossed

when placed in the same region of the plane defined by cycle C.




PLANARITY

O Other Planarity Criteria

® 'The auxiliary graph has vertices corresponding to incompatible segments

and edges joining the vertices if the segments are incompatible.

o The embed of pieces that are not segments is easy because they only have one
point of contact with graph.

o For the embed of segments it is constructed an auxiliary graph P(C)

o This graph has as many vertices as the segments of the graph that are relative
to subgraph G and edges joining the vertices if parts are incompatible.

(6] O

? Cycle C o
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PLANARITY

O Other Planarity Criteria
* Theorem 17 (MacLane 1937):

A graph is plane iff for every circle C of G, the auxiliary graph P(C) is bipartite.




PLANARITY

O Planarity Detection Algorithm (DMP)
* Algorithm of Demoucron, Malgrange, Peruiset 1964 (DMP)
® Pre-processing:
1. If n <5,m <9, then the graph is plane
2. It m > 3n — 6, then the graph is non-plane
3. consider connected graphs
4. consider 2 —connected graphs (blocks)
5. consider simple graphs

0. produce uniform graphs without vertices of degree 2
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O Planarity Detection Algorithm (DMP)
* Algorithm of Demoucron, Malgrange, Peruiset 1964 (DMP)
® Pre-processing:
1. If n <5,m <9, then the graph is plane
2. It m > 3n — 6, then the graph is non-plane
3. consider connected graphs
» If the graph is not connected then test each component seperately
4. consider 2 —connected graphs (blocks)
» If the graph has a cut-vertex it is adequate to check if the two blocks are plane.
5. consider simple graphs
» If there exist loops or parallel edges, ignore them

0. produce uniform graphs without vertices of degree 2

» contract to homomorphic graph with smaller number of vertices




PLANARITY

O Planarity Detection Algorithm (DMP)
* Algorithm of Demoucron, Malgrange, Peruiset 1964 (DMP)

* Strategy of DMP: find a sequence embeddible subgraphs (progressively larger),
starting from a circle and adding segments.

o Starting from the cycle, segments are created.
o For each segment we find the number of regions that it can be embedded.
o If a segment is embedded into only one region, then it has priority.

o In the case of a tie, we choose at random.

o The process is repeated at most m —n + 1 times.

r2




PLANARITY

O Planarity Detection Algorithm (DMP)
* Algorithm of Demoucron, Malgrange, Peruiset 1964 (DMP)

* Strategy of DMP: find a sequence embeddible subgraphs (progressively larger),
starting from a circle and adding segments.

o Starting from the cycle, segments are created.
o For each segment we find the number of regions that it can be embedded.
o If a segment is embedded into only one region, then it has priority.

o In the case of a tie, we choose at random.

o The process is repeated at most m —n + 1 times.

° The DMP algorithm has complexity O(n*), however, there is also the Hopcroft-
Tarjan (1974) algorithm with O(n) complexity which is based on DFS, but is complex.




