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• Can we construct a graph in which there do not exist intersecting edges???

 The Problem:



 Planar Graphs 
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• Α plane graph is a graph that any two of its edges are only adjunct on their

endpoints.

• A graph is called planar or embeddable in the plane, if is isomorphic to a

plane graph.
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• Jordan Curve: A continuous line in the plane that does not intersect itself.

• Closed Jordan Curve: A Jordan curve whose two ends coincide.

• Theorem 1 (Jordan):

Given a closed Jordan curve 𝐿 and its two points 𝑣𝑖 and 𝑣𝑗, then the Jordan

curve joining these points,

a) either is inside 𝐿,

b) either outside 𝐿,

c) or intersects 𝐿 in some points other than 𝑣𝑖 and 𝑣𝑗 .
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• Given a planar graph 𝐺 and a point 𝑥 of the layer, we call region or face or

the window of 𝐺 containing the 𝑥, the set of points of the plane that can be

joined to 𝑥 through a Jordan curve that does not intersects the edges of 𝐺.

• r (or f) denotes the number of regions of a planar graph

• The boundary of a region is the subgraph affected by the edges and vertices

adjacent to the region (i.e., the edges surrounding the region).
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• Given a planar graph 𝐺 and a point 𝑥 of the layer, we call region or face or

the window of 𝐺 containing the 𝑥, the set of points of the plane that can be

joined to 𝑥 through a Jordan curve that does not intersects the edges of 𝐺.

• r (or f) denotes the number of regions of a planar graph

• The boundary of a region is the subgraph affected by the edges and vertices

adjacent to the region (i.e., the edges surrounding the region).

• The region 𝒓𝟐 is called, exterior or infinite or unbounded or outer.
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• Given a planar graph 𝐺 and a point 𝑥 of the layer, we call region or face or

the window of 𝐺 containing the 𝑥, the set of points of the plane that can be

joined to 𝑥 through a Jordan curve that does not intersects the edges of 𝐺.

• r (or f) denotes the number of regions of a planar graph

• The boundary of a region is the subgraph affected by the edges and vertices

adjacent to the region (i.e., the edges surrounding the region).

• Outer-planar is called a graph if all of its vertices belong in one region.

o The edges of such a graph lie either on top or in a circle and they don't

intersect.

o Each outer-planar graph is planar but the reverse is not true (eg 𝐾4 is

planar but not outer-planar).
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 Euler & Kuratowski Theorems
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• Euler’s Theorem proves that despite the way we embed a graph in the

plane, the number of regions remains constant and is given by the Euler’s

polyhedron formula.

• Theorem 2 (Euler, 1752):

If 𝐺 is a connected plane graph, then it holds that:

𝑛 + 𝑟 = 𝑚 + 2
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• Euler’s Theorem proves that despite the way we embed a graph in the
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• Euler’s Theorem proves that despite the way we embed a graph in the

plane, the number of regions remains constant and is given by the Euler’s

polyhedron formula.

• Theorem 2 (Euler, 1752):

If 𝐺 is a connected plane graph, then it holds that:
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• Euler’s Theorem proves that despite the way we embed a graph in the

plane, the number of regions remains constant and is given by the Euler’s

polyhedron formula.

• Theorem 2 (Euler, 1752):

If 𝐺 is a connected plane graph, then it holds that:
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• Euler’s Theorem proves that despite the way we embed a graph in the

plane, the number of regions remains constant and is given by the Euler’s

polyhedron formula.

• Theorem 2 (Euler, 1752):

If 𝐺 is a connected plane graph, then it holds that:

𝑛 + 𝑟 = 𝑚 + 2

Inductively on the number of  edges…
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• Euler’s Theorem proves that despite the way we embed a graph in the

plane, the number of regions remains constant and is given by the Euler’s

polyhedron formula.

• Theorem 2 (Euler, 1752):

If 𝐺 is a connected plane graph, then it holds that:

𝑛 + 𝑟 = 𝑚 + 2

o If  𝑚 = 0, then 𝑛 = 1 (as 𝐺 is connected), and 𝑟 = 1.

o Let that the Theorem holds for a connected graph of  𝑚 − 1 edges.

o In this graph we draw a new edge 𝑒, and three cases may occur:
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• Euler’s Theorem proves that despite the way we embed a graph in the

plane, the number of regions remains constant and is given by the Euler’s

polyhedron formula.

• Theorem 2 (Euler, 1752):

If 𝐺 is a connected plane graph, then it holds that:

𝑛 + 𝑟 = 𝑚 + 2

o If  𝑚 = 0, then 𝑛 = 1 (as 𝐺 is connected), and 𝑟 = 1.

o Let that the Theorem holds for a connected graph of  𝑚 − 1 edges.

o In this graph we draw a new edge 𝑒, and three cases may occur:

1. The new edge 𝑒 is a loop and hence a new region is formed, as the 

number of  vertices remains constant.
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• Euler’s Theorem proves that despite the way we embed a graph in the

plane, the number of regions remains constant and is given by the Euler’s

polyhedron formula.

• Theorem 2 (Euler, 1752):

If 𝐺 is a connected plane graph, then it holds that:

𝑛 + 𝑟 = 𝑚 + 2

o If  𝑚 = 0, then 𝑛 = 1 (as 𝐺 is connected), and 𝑟 = 1.

o Let that the Theorem holds for a connected graph of  𝑚 − 1 edges.

o In this graph we draw a new edge 𝑒, and three cases may occur:

2. The new edge 𝑒 connects two existing vertices, and hence, a new 

region is formed on a constant number of  edges, and
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• Euler’s Theorem proves that despite the way we embed a graph in the

plane, the number of regions remains constant and is given by the Euler’s

polyhedron formula.

• Theorem 2 (Euler, 1752):

If 𝐺 is a connected plane graph, then it holds that:

𝑛 + 𝑟 = 𝑚 + 2

o If  𝑚 = 0, then 𝑛 = 1 (as 𝐺 is connected), and 𝑟 = 1.

o Let that the Theorem holds for a connected graph of  𝑚 − 1 edges.

o In this graph we draw a new edge 𝑒, and three cases may occur:

3. The new edge 𝑒 is incident on only one vertex of  𝐺, and hence a new 

vertex is constructed as the number of  regions remains the same.
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• Euler’s Theorem proves that despite the way we embed a graph in the

plane, the number of regions remains constant and is given by the Euler’s

polyhedron formula.

• Theorem 2 (Euler, 1752):

If 𝐺 is a connected plane graph, then it holds that:

𝑛 + 𝑟 = 𝑚 + 2

o If  𝑚 = 0, then 𝑛 = 1 (as 𝐺 is connected), and 𝑟 = 1.

o Let that the Theorem holds for a connected graph of  𝑚 − 1 edges.

o In this graph we draw a new edge 𝑒, and three cases may occur:

• In any case, the Theorem is correct.
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• Euler’s Theorem proves that despite the way we embed a graph in the

plane, the number of regions remains constant and is given by the Euler’s

polyhedron formula.

• Theorem 2 (Euler, 1752):

If 𝐺 is a connected plane graph, then it holds that:

𝑛 + 𝑟 = 𝑚 + 2
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• Euler’s Theorem proves that despite the way we embed a graph in the

plane, the number of regions remains constant and is given by the Euler’s

polyhedron formula.

• Corollary:

If 𝐺 is a plane graph of 𝑘 components, then it holds that:

𝑛 + 𝑟 = 𝑚 + 𝑘 + 1
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• Euler’s Theorem proves that despite the way we embed a graph in the

plane, the number of regions remains constant and is given by the Euler’s

polyhedron formula.

• Corollary:

If 𝐺 is a plane graph of 𝑘 components, then it holds that:

𝑛 + 𝑟 = 𝑚 + 𝑘 + 1

o Apply the Euler’s formula on each component including only once the 

outer region.
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• Euler’s Theorem proves that despite the way we embed a graph in the

plane, the number of regions remains constant and is given by the Euler’s

polyhedron formula.

• Corollary:

If 𝐺 is a plane graph of 𝑘 components, then it holds that:

𝑛 + 𝑟 = 𝑚 + 𝑘 + 1

o Apply the Euler’s formula on each component including only once the 

outer region.

o 𝑛1 + 𝑟1 = 𝑚1 + 2
𝑛2 + 𝑟2 = 𝑚2 + 2
…
𝑛𝑘 + 𝑟𝑘 = 𝑚𝑘 + 2

o ⟹ 𝑛 + 𝑟 + 𝑘 − 1 = 𝑚 + 2𝑘
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• Euler’s Theorem proves that despite the way we embed a graph in the

plane, the number of regions remains constant and is given by the Euler’s

polyhedron formula.

• Corollary:

If 𝐺 is a plane graph of 𝑘 components, then it holds that:

𝑛 + 𝑟 = 𝑚 + 𝑘 + 1

o Apply the Euler’s formula on each component including only once the 

outer region.

o 𝑛1 + 𝑟1 = 𝑚1 + 2
𝑛2 + 𝑟2 = 𝑚2 + 2
…
𝑛𝑘 + 𝑟𝑘 = 𝑚𝑘 + 2

o ⟹ 𝑛 + 𝑟 + 𝑘 − 1 = 𝑚 + 2𝑘 ⇒ 𝑛 + 𝑟 = 𝑚 + 𝑘 + 1
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• Euler’s Theorem proves that despite the way we embed a graph in the

plane, the number of regions remains constant and is given by the Euler’s

polyhedron formula.

• Corollary:

If 𝐺 is a plane graph of 𝑘 components, then it holds that:

𝑛 + 𝑟 = 𝑚 + 𝑘 + 1

o Apply the Euler’s formula on each component including only once the 

outer region.

o 𝑛1 + 𝑟1 = 𝑚1 + 2
𝑛2 + 𝑟2 = 𝑚2 + 2
…
𝑛𝑘 + 𝑟𝑘 = 𝑚𝑘 + 2

o ⟹ 𝑛 + 𝑟 + 𝑘 − 1 = 𝑚 + 2𝑘
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• Euler’s Theorem proves that despite the way we embed a graph in the

plane, the number of regions remains constant and is given by the Euler’s

polyhedron formula.

• In Outer-planar graphs all of the vertices belong in one region.

o Is it possible to add edges on plane graphs and the graph remain plane?
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• In Outer-planar graphs all of the vertices belong in one region.

o Is it possible to add edges on plane graphs and the graph remain plane?

PLANARITY



 Euler & Kuratowski Theorems

43

• Euler’s Theorem proves that despite the way we embed a graph in the

plane, the number of regions remains constant and is given by the Euler’s

polyhedron formula.

• In Outer-planar graphs all of the vertices belong in one region.

o Is it possible to add edges on plane graphs and the graph remain plane?

Such a process may proceed until a “specific point”…

 Maximal plane graph, is called the graph 𝐺 if for each pair 𝑥, 𝑦 of

discrete non adjacent vertices of 𝐺, the graph 𝐺 + (𝑥, 𝑦) is not plane.

But … until where …

 If there exist region surrounded by cycle of length 4, then a new edge

may be added and the graph remain plane.

 As long as there exist regions surrounded by cycles of length greater

than 3 there can be added edges retaining the planarity of the graph.

Therefore, the maximal plane graphs are called triangulated.
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• Euler’s Theorem proves that despite the way we embed a graph in the

plane, the number of regions remains constant and is given by the Euler’s

polyhedron formula.

• In Outer-planar graphs all of the vertices belong in one region.

o Is it possible to add edges on plane graphs and the graph remain plane?

Such a process may proceed until a “specific point”…

 Maximal plane graph, is called the graph 𝐺 if for each pair 𝑥, 𝑦 of

discrete non adjacent vertices of 𝐺, the graph 𝐺 + (𝑥, 𝑦) is not plane.

 Similarly are defined the Maximal outer planar graphs, that are

produced after the triangulation of a polygon, while every maximal

plane graph occurs after the triangulation of the sphere.
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• Euler’s Theorem proves that despite the way we embed a graph in the

plane, the number of regions remains constant and is given by the Euler’s

polyhedron formula.

• Lemma (Handshake Lemma for Plane Graphs):

For each connected plane graph 𝐺 it holds that:

2𝑚 =  𝑖 = 1
𝑟 =𝑚− 𝑛 + 2𝑑 𝑟𝑖 =  

𝑗=𝐷(𝐺)
𝐷(𝐺)

𝑗 𝑛 𝑗

where 𝑑(𝑟𝑖) is the degree of  the region 𝑟𝑖, i.e. the number of  the edges 

surrounding the i-th region, while 𝑛(𝑗) denotes the number of  vertices of  

degree 𝑗.

o Each edges counts twice in each regions and each vertex.
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• Euler’s Theorem proves that despite the way we embed a graph in the

plane, the number of regions remains constant and is given by the Euler’s

polyhedron formula.

• Corollary :

If 𝐺 is a connected maximum planar graph of 𝑛 ≥ 3 edges it holds that:

𝑚 = 3𝑛 – 6

o Let 𝑟 be the number of areas of the graph.

o At a maximum plane graph there is: 𝑑 (𝑟𝑖) = 3 for each area.

o The Lemma therefore states:

2𝑚 = 3 + 3 + ⋯+ 3(𝑟 = 𝑚 –𝑛 + 2 𝑡𝑖𝑚𝑒𝑠)⇒2𝑚 = 3(𝑚 –𝑛 + 2) ⇒ 𝑚 = 3𝑛 – 6
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• Euler’s Theorem proves that despite the way we embed a graph in the

plane, the number of regions remains constant and is given by the Euler’s

polyhedron formula.

• Corollary :

For every connected planar graph with 𝑛 ≥ 3 vertices it holds that:

𝑚 ≤ 3𝑛 – 6

o Let 𝑟 be the number of areas of the graph.

o In a simple plane graph, 𝑑(𝑟𝑖) ≥ 3 applies to each area 𝑟𝑖.

o The Lemma therefore states:

2𝑚 ≥ 3 + 3 + ⋯ + 3 (𝑟 = 𝑚 – 𝑛 + 2 𝑡𝑖𝑚𝑒𝑠)⇒2𝑚 ≥ 3 (𝑚 – 𝑛 + 2)⇒𝑚 ≤ 3𝑛 – 6
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• Euler’s Theorem proves that despite the way we embed a graph in the

plane, the number of regions remains constant and is given by the Euler’s

polyhedron formula.

• Corollary :

For every connected plane bipartite graph 𝐺 with 𝑛 ≥ 3, it holds that:

𝑚 ≤ 2𝑛 − 4

o Let 𝑟 be the number of areas of the graph.

o On a plane bipartite it holds that, 𝑑(𝑟𝑖) ≥ 4 for each region 𝑟𝑖 .

o The Lemma therefore states:

2𝑚 ≥ 4 + 4 + ⋯ + 4 (𝑟 = 𝑚 – 𝑛 + 2 𝑡𝑖𝑚𝑒𝑠)⇒2𝑚 ≥ 4 (𝑚 – 𝑛 + 2)⇒𝑚 ≤ 2𝑛 – 4
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• Euler’s Theorem proves that despite the way we embed a graph in the

plane, the number of regions remains constant and is given by the Euler’s

polyhedron formula.

• Corollary :

Each plane graph contains at least one vertex 𝑣 of degree 𝑑(𝑣) ≤ 5

o Suppose that all vertices have degree ≥ 6 and that the graph has

𝑛 vertices and 𝑚 edges.

o It holds that 𝑚 ≤ 3𝑛 – 6 or 2𝑚 ≤ 6𝑛 – 12 [1]

o From the Handshake Lemma we know that the sum the degrees of the

vertices of a graph are 2𝑚.

o Since 𝑑(𝑣) ≥ 6 for every 𝑣 it holds 2𝑚 ≥ 6𝑛 [2]

o From [1] and [2] ⇒ 6𝑛 ≤ 2𝑚 ≤ 6𝑛 – 12, that is a contradiction.
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• Euler’s Theorem proves that despite the way we embed a graph in the

plane, the number of regions remains constant and is given by the Euler’s

polyhedron formula.

• Theorem 3 :

The graph 𝐾5 is non plane.

o If 𝐾5 was plane, then from the Corollary it would hold that 𝑚 ≤ 3𝑛 − 6
o Now it holds that 1 = 𝐸 𝐾5 ≤ 3(5) − 6 = 9, that is a contradiction.

• Theorem 4 :

The graph 𝐾3,3 is non plane.

o Let that 𝐾3,3 is plane graph…

o Since the graph does not contain triangular regions it is implied that every

regions surrounded by polygons of at least 4 vertices.

o Then, it holds that 4𝑟 ≤ 2𝑚 = 18, but it should hold 𝑟 ≤ 4.

o Euler’s formula→ 2 = 𝑛 − 𝑚 + 𝑟 ≤ 6 − 9 + 4 = 1, that is a contradiction
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• 𝐾5 is the non-plane graph with the smallest number of vertices and 𝐾3.3 the

non-plane graph with the smallest number of edges.

• Two graphs are called homomorphic if one can occur from the other with

one or more subdivisions of its edges.

• Theorem 5 (Kuratowski 1930):

A graph is plane if it does not contain subgraphs homomorphic to 𝐾5 and

𝐾3.3.

• Theorem 6 (Wagner 1937, Harray & Tutte 1965):

A graph is plane if it does not contain subgraphs contractible to 𝐾5 and 𝐾3.3.

o contraction is its reverse procedure of edge subdivision

• A graph is embeddable on the surface of a sphere, iff it is embeddable in the

plane.
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• Which is the minimum number of levels required for the embed of a graph?
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• Which is the minimum number of levels required for the embed of a graph?

o Thickness 𝒕(𝑮), defines the minimum number of levels required for the

integration of a graph (“how much non-planar is a graph?”).

 A graph 𝐺 is decomposed to 𝑟 > 2 planar graphs: 𝐺 = 𝐻1 ∪ H2 ∪ ⋯∪ H𝑟

 The thickness of a plane graph is 𝑡 = 1

 𝑡(𝐾3,3) = 𝑡(𝐾5) = 𝑡(𝐾8) = 2

o Corollary:

The thickness of a connected graph 𝐺, 𝑛 ≥ 3 satisfies the equations:

𝑡 𝐺 ≥
𝑚

3𝑛−6
=

𝑚+3𝑛−7

3𝑛−6
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• Which is the minimum number of levels required for the embed of a graph?

o Thickness 𝒕(𝑮), defines the minimum number of levels required for the

embed of a graph (“how much non-planar is a graph?”).

 A graph 𝐺 is decomposed to 𝑟 > 2 planar graphs: 𝐺 = 𝐻1 ∪ H2 ∪ ⋯∪ H𝑟

 The thickness of a plane graph is 𝑡 = 1

 𝑡(𝐾3,3) = 𝑡(𝐾5) = 𝑡(𝐾8) = 2

o Corollary:

The thickness of a bipartite graph 𝐺 of 𝑛 vertices and 𝑚 edges satisfies the

equation:

𝑡 𝐺 ≥
𝑚

2𝑛−4
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• Which is the minimum number of levels required for the embed of a graph?

o Thickness 𝒕(𝑮), defines the minimum number of levels required for the

embed of a graph (“how much non-planar is a graph?”).

 A graph 𝐺 is decomposed to 𝑟 > 2 planar graphs: 𝐺 = 𝐻1 ∪ H2 ∪ ⋯∪ H𝑟

 The thickness of a plane graph is 𝑡 = 1

 𝑡(𝐾3,3) = 𝑡(𝐾5) = 𝑡(𝐾8) = 2

o Corollary:

The thickness of a complete graph 𝐾𝑛 , of 𝑛 ≥ 3 vertices satisfies the

equation:

𝑡 𝐾𝑛 ≥
𝑛+7

6
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• Which is the minimum number of levels required for the embed of a graph?

o Thickness 𝒕(𝑮), defines the minimum number of levels required for the

embed of a graph (“how much non-planar is a graph?”).

 A graph 𝐺 is decomposed to 𝑟 > 2 planar graphs: 𝐺 = 𝐻1 ∪ H2 ∪ ⋯∪ H𝑟

 The thickness of a plane graph is 𝑡 = 1

 𝑡(𝐾3,3) = 𝑡(𝐾5) = 𝑡(𝐾8) = 2

o Theorem 7:

The thickness of a complete graph 𝐾𝑛 , of 𝑛 ≥ 3 vertices satisfies the

equation:

𝑡 𝐾𝑛 =  

𝑛+7

6
𝑖𝑓 𝑛 ≠ 9,10

3 𝑖𝑓 𝑛 = 9,10
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• Which is the minimum number of levels required for the embed of a graph?

o Thickness 𝒕(𝑮), defines the minimum number of levels required for the

embed of a graph (“how much non-planar is a graph?”).

 A graph 𝐺 is decomposed to 𝑟 > 2 planar graphs: 𝐺 = 𝐻1 ∪ H2 ∪ ⋯∪ H𝑟

 The thickness of a plane graph is 𝑡 = 1

 𝑡(𝐾3,3) = 𝑡(𝐾5) = 𝑡(𝐾8) = 2

o Corollary:

The thickness of a complete bipartite graph 𝐾𝑚,𝑛 , satisfies the

equation:

𝑡 𝐾𝑚,𝑛 ≥
𝑚𝑛

2(𝑚+𝑛−2)
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• Which is the minimum number of levels required for the embed of a graph?

o Thickness 𝒕(𝑮), defines the minimum number of levels required for the

embed of a graph (“how much non-planar is a graph?”).

o Coarseness 𝝃 𝑮 , defines the maximum number of non-planar subgraphs

that consist of foreign sets of edges.

• Which is the minimum number of edge sections of a non-planar graph?

o Crossing number 𝒄𝒓(𝑮), defines the minimum number of sections of a

graph per plane.

 Crossing number of a plane graph is 𝑐𝑟 = 0
 𝑐𝑟(𝐾3,3) = 𝑐𝑟(𝐾5) = 1

o Theorem 8:

For the crossing number of the complete connected graph 𝐾6, it holds:

𝑐𝑟(𝐾6) = 3
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• Which is the minimum number of levels required for the embed of a graph?

o Thickness 𝒕(𝑮), defines the minimum number of levels required for the

embed of a graph (“how much non-planar is a graph?”).

o Coarseness 𝝃 𝑮 , defines the maximum number of non-planar subgraphs

that consist of foreign sets of edges.

• Which is the minimum number of edge sections of a non-planar graph?

o Crossing number 𝒄𝒓(𝑮), defines the minimum number of sections of a

graph per plane.

 Crossing number of a plane graph is 𝑐𝑟 = 0
 𝑐𝑟(𝐾3,3) = 𝑐𝑟(𝐾5) = 1

o Theorem 9:

The crossing number of the complete connected graph 𝐾𝑛 , and the

complete bipartite graph 𝐾𝑛1,𝑛2
satisfy the equations:

𝑐𝑟 𝐾𝑛 ≤
1

4

𝑛

2

𝑛 − 1

2

𝑛 − 2

2

𝑛 − 3

2
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• Which is the minimum number of levels required for the embed of a graph?

o Thickness 𝒕(𝑮), defines the minimum number of levels required for the

embed of a graph (“how much non-planar is a graph?”).

o Coarseness 𝝃 𝑮 , defines the maximum number of non-planar subgraphs

that consist of foreign sets of edges.

• Which is the minimum number of edge sections of a non-planar graph?

o Crossing number 𝒄𝒓(𝑮), defines the minimum number of sections of a

graph per plane.

 Crossing number of a plane graph is 𝑐𝑟 = 0
 𝑐𝑟(𝐾3,3) = 𝑐𝑟(𝐾5) = 1

o Theorem 9:

The crossing number of the complete connected graph 𝐾𝑛 , and the

complete bipartite graph 𝐾𝑛1,𝑛2
satisfy the equations:

𝑐𝑟 𝐾𝑛1,𝑛2
≤

1

4

𝑛1

2

𝑛1 − 1

2

𝑛2

2

𝑛2 − 1

2
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• Which is the minimum number of levels required for the embed of a graph?

o Thickness 𝒕(𝑮), defines the minimum number of levels required for the

embed of a graph (“how much non-planar is a graph?”).

o Coarseness 𝝃 𝑮 , defines the maximum number of non-planar subgraphs

that consist of foreign sets of edges.

• Which is the minimum number of edge sections of a non-planar graph?

o Crossing number 𝒄𝒓(𝑮), defines the minimum number of sections of a

graph per plane.

• How distant is graph 𝐺 from planarity?

o Splitting number 𝒔(𝑮), defines the minimum number of splits required to

make a graph plane.
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• Which is the minimum number of levels required for the embed of a graph?

o Thickness 𝒕(𝑮), defines the minimum number of levels required for the

embed of a graph (“how much non-planar is a graph?”).

o Coarseness 𝝃 𝑮 , defines the maximum number of non-planar subgraphs

that consist of foreign sets of edges.

• Which is the minimum number of edge sections of a non-planar graph?

o Crossing number 𝒄𝒓(𝑮), defines the minimum number of sections of a

graph per plane.

• How distant is graph 𝐺 from planarity?

o Splitting number 𝒔(𝑮), defines the minimum number of splits required to

make a graph plane.
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• Which is the minimum number of levels required for the embed of a graph?

o Thickness 𝒕(𝑮), defines the minimum number of levels required for the

embed of a graph (“how much non-planar is a graph?”).

o Coarseness 𝝃 𝑮 , defines the maximum number of non-planar subgraphs

that consist of foreign sets of edges.

• Which is the minimum number of edge sections of a non-planar graph?

o Crossing number 𝒄𝒓(𝑮), defines the minimum number of sections of a

graph per plane.

• How distant is graph 𝐺 from planarity?

o Splitting number 𝒔(𝑮), defines the minimum number of splits required to

make a graph plane.

o Theorem 10:

The split number of 𝐾𝑛, 𝐾𝑛1,𝑛2
satisfy the equations:

𝑠 𝐾𝑛 =
(𝑛−3)(𝑛−4)

6
, 𝑛 ≥ 10
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• Which is the minimum number of levels required for the embed of a graph?

o Thickness 𝒕(𝑮), defines the minimum number of levels required for the

embed of a graph (“how much non-planar is a graph?”).

o Coarseness 𝝃 𝑮 , defines the maximum number of non-planar subgraphs

that consist of foreign sets of edges.

• Which is the minimum number of edge sections of a non-planar graph?

o Crossing number 𝒄𝒓(𝑮), defines the minimum number of sections of a

graph per plane.

• How distant is graph 𝐺 from planarity?

o Splitting number 𝒔(𝑮), defines the minimum number of splits required to

make a graph plane.

o Theorem 10:

The split number of 𝐾𝑛, 𝐾𝑛1,𝑛2
satisfy the equations:

𝑠 𝐾𝑛1,𝑛2
=

(𝑛1 − 2)(𝑛2 − 2)

2
, 𝑛1, 𝑛2 ≥ 2
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• Embed to other surfaces …

o Embed into a “torus”.

o A “torus” is homomorphic to a “handle”.

o Moebius Band.
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• 𝐾5 is embedded into the torus, while 𝐾3,3 is embedded in the

Band of Moebius.

• Torus can be regarded as a sphere with a handle, so in the general case we have a

sphere with multiple handles.

• The number of handles becomes a genus.

• A surface has genus g, if it is homomorphic to a sphere with 𝑔 handles.

• The sphere has g=0, while torus has g=1.

• A graph that can be embedded on a surface of genus 𝑔 but not on a surface of

genus 𝑔 − 1, is called a graph of genus 𝒈.

• Theorem 11:

If 𝐺 is a connected graph then it holds:

𝑛 + 𝑟 = 𝑚 + 2 − 2𝑔
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• 𝐾5 is embedded into the torus, while 𝐾3,3 is embedded in the

Band of Moebius.

• Torus can be regarded as a sphere with a handle So in the general case we have a

sphere with multiple handles.

• The number of handles becomes a genus.

• A surface has genus g, if it is homomorphic to a sphere with 𝑔 handles.

• The sphere has g=0, while torus has g=1.

• A graph that can be embedded on a surface of genus 𝑔 but not on a surface of

genus 𝑔 − 1, is called a graph of genus 𝒈.

• Theorem 12:

The genus 𝑔(𝐺) is not greater that the cross number 𝑐𝑟(𝐺)of a graph 𝐺:

𝑔 𝐺 ≤ cr(𝐺)
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• 𝐾5 is embedded into the torus, while 𝐾3,3 is embedded in the

Band of Moebius.

• Torus can be regarded as a sphere with a handle So in the general case we have a

sphere with multiple handles.

• The number of handles becomes a genus.

• A surface has genus g, if it is homomorphic to a sphere with 𝑔 handles.

• The sphere has g=0, while torus has g=1.

• A graph that can be embedded on a surface of genus 𝑔 but not on a surface of

genus 𝑔 − 1, is called a graph of genus 𝒈.

• Corollary:

The genus 𝑔(𝐺) of a graph 𝐺 𝑛 ≥ 4 satisfies the relation:

𝑔 𝐺 ≥
𝑚 − 3𝑛

6
+ 1
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• 𝐾5 is embedded into the torus, while 𝐾3,3 is embedded in the

Band of Moebius.

• Torus can be regarded as a sphere with a handle So in the general case we have a

sphere with multiple handles.

• The number of handles becomes a genus.

• A surface has genus g, if it is homomorphic to a sphere with 𝑔 handles.

• The sphere has g=0, while torus has g=1.

• A graph that can be embedded on a surface of genus 𝑔 but not on a surface of

genus 𝑔 − 1, is called a graph of genus 𝒈.

• Theorem 13:

The genus 𝑔(𝐺) of a complete graph 𝐾𝑛 𝑛 ≥ 4 satisfies the relation:

𝑔 𝐾𝑛 =
(𝑛 − 3)(𝑛 − 4)

12
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• 𝐾5 is embedded into the torus, while 𝐾3,3 is embedded in the

Band of Moebius.

• Torus can be regarded as a sphere with a handle So in the general case we have a

sphere with multiple handles.

• The number of handles becomes a genus.

• A surface has genus g, if it is homomorphic to a sphere with 𝑔 handles.

• The sphere has g=0, while torus has g=1.

• A graph that can be embedded on a surface of genus 𝑔 but not on a surface of

genus 𝑔 − 1, is called a graph of genus 𝒈.

• Corollary:

The genus 𝑔(𝐺) of a complete bipartite graph 𝐾𝑛1,𝑛2
satisfies the relation:

𝑔 𝐾𝑛1,𝑛2
=

(𝑛1 − 2)(𝑛2 − 42

4
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• Geometric Dual:

o In each region of 𝐺 a vertex of 𝐺∗ is inserted.

o Two vertices of 𝐺∗ are joined by one edge for each common edge of the

corresponding regions of 𝐺.
o For each bridge of 𝐺 it is inserted at 𝐺∗ a loop at the top corresponding to

the regions surrounding the bridge.

o Every edge of 𝐺∗ intersects with only one edge of 𝐺.
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• Geometric Dual:

o In each region of 𝐺 a vertex of 𝐺∗ is inserted.

o Two vertices of 𝐺∗ are joined by one edge for each common edge of the

corresponding regions of 𝐺.
o For each bridge of 𝐺 it is inserted at 𝐺∗ a loop at the top corresponding to

the regions surrounding the bridge.

o Every edge of 𝐺∗ intersects with only one edge of 𝐺.

• Combinatorial Dual:

o A graph  𝐺 is called combinatorial dual (or, abstract dual) of a graph 𝐺 if and

only if there exists unambiguous match between their edges, such that the

edges of a cycle of  𝐺 correspond to a vertex cut set of 𝐺.

• Theorem 14:

Every plane graph 𝐺 has a corresponding plane combinatorial dual graph 𝐺∗.
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• Geometric Dual:

o In each region of 𝐺 a vertex of 𝐺∗ is inserted.

o Two vertices of 𝐺∗ are joined by one edge for each common edge of the

corresponding regions of 𝐺.
o For each bridge of 𝐺 it is inserted at 𝐺∗ a loop at the top corresponding to

the regions surrounding the bridge.

o Every edge of 𝐺∗ intersects with only one edge of 𝐺.

• Combinatorial Dual:

o A graph  𝐺 is called combinatorial dual (or, abstract dual) of a graph 𝐺 if and

only if there exists unambiguous match between their edges, such that the

edges of a cycle of  𝐺 correspond to a vertex cut set of 𝐺.

• Corollary:

If the graph 𝐺 has a has a geometric dual graph 𝐺∗, then it holds:

𝐺∗ ∗ = 𝐺
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• Geometric Dual:

o In each region of 𝐺 a vertex of 𝐺∗ is inserted.

o Two vertices of 𝐺∗ are joined by one edge for each common edge of the

corresponding regions of 𝐺.
o For each bridge of 𝐺 it is inserted at 𝐺∗ a loop at the top corresponding to

the regions surrounding the bridge.

o Every edge of 𝐺∗ intersects with only one edge of 𝐺.

• Combinatorial Dual:

o A graph  𝐺 is called combinatorial dual (or, abstract dual) of a graph 𝐺 if and

only if there exists unambiguous match between their edges, such that the

edges of a cycle of  𝐺 correspond to a vertex cut set of 𝐺.

• Theorem 15:

A graph 𝐺 is plane if and only if it has a combinatorial dual graph.
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• Geometric Dual:

o In each region of 𝐺 a vertex of 𝐺∗ is inserted.

o Two vertices of 𝐺∗ are joined by one edge for each common edge of the

corresponding regions of 𝐺.
o For each bridge of 𝐺 it is inserted at 𝐺∗ a loop at the top corresponding to

the regions surrounding the bridge.

o Every edge of 𝐺∗ intersects with only one edge of 𝐺.

• Combinatorial Dual:

o A graph  𝐺 is called combinatorial dual (or, abstract dual) of a graph 𝐺 if and

only if there exists unambiguous match between their edges, such that the

edges of a cycle of  𝐺 correspond to a vertex cut set of 𝐺.

• Self Dual:

A graph homomorphic to its dual is called self-dual.
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• Except for the Euler theorem and the Kuratowski theorem there are two other

criteria regarding the planarity of a graph.

• A Complete Set of Basic Circuits is a set of circles where:

o Each circle of the graph can be expressed as a ring sum of some or all of the

cycles of the set 𝑆, and

o No circle of the set 𝑆 can be expressed as a ring sum of other cycles inside 𝑆.

• Theorem 16 (MacLane 1937):

A graph 𝐺 is plane if only if there is a Complete Set of Basic Circuits 𝑆, such

that no edges of the graph 𝐺 appear in more than two cycles of 𝑆 .

• The three theorems (Euler, Kuratowski, McLane) do not give effective

algorithms either plane representations
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• Let graph 𝐺(𝑉, 𝐸) and subgraph 𝐺1(𝑉1, 𝐸1) ⊆ 𝐺.

• A piece, 𝑃, of 𝐺(𝑉, 𝐸) is called relative to subgraph 𝐺1(𝑉1, 𝐸1) if:

o either, an edge 𝑒 = (𝑢, 𝑣) ∈ 𝐸, where 𝑒 ∉ Ε1, and 𝑢, 𝑣 ∈ 𝑉1

o or, a connected component of graph 𝐺 – 𝐺1 plus any edges incident on the

vertices of the component

• The edges of 𝑃 that belong also in 𝐺1 are called contact vertices.

• If a piece has two or more contact vertices is called segment, or, bridge.

• If 𝐶 is a cycle of graph 𝐺, then the embed of 𝐶 partitions the plane into two

regions, one inner and one outer.

• Two segments are called incompatible if at least two of their edges are crossed

when placed in the same region of the plane defined by cycle 𝐶.
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• The auxiliary graph has vertices corresponding to incompatible segments 

and edges joining the vertices if  the segments are incompatible.

o The embed of  pieces that are not segments is easy because they only have one 

point of  contact with graph.

o For the embed of  segments it is constructed an auxiliary graph 𝑃(𝐶)

o This graph has as many vertices as the segments of  the graph that are relative 

to subgraph 𝐺1 and edges joining the vertices if  parts are incompatible.
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 Other Planarity Criteria

• Theorem 17 (MacLane 1937):

A graph is plane iff for every circle 𝐶 of 𝐺, the auxiliary graph 𝑃(𝐶) is bipartite.
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 Planarity Detection Algorithm (DMP)

• Algorithm of Demoucron, Malgrange, Peruiset 1964 (DMP)

• Pre-processing:

1. If 𝑛 < 5,𝑚 < 9, then the graph is plane

2. If 𝑚 > 3𝑛 − 6, then the graph is non-plane

3. consider connected graphs

4. consider 2 −connected graphs (blocks)

5. consider simple graphs

6. produce uniform graphs without vertices of degree 2

PLANARITY
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 Planarity Detection Algorithm (DMP)

• Algorithm of Demoucron, Malgrange, Peruiset 1964 (DMP)

• Pre-processing:

1. If 𝑛 < 5,𝑚 < 9, then the graph is plane

2. If 𝑚 > 3𝑛 − 6, then the graph is non-plane

3. consider connected graphs

 If the graph is not connected then test each component seperately

4. consider 2 −connected graphs (blocks)

 If the graph has a cut-vertex it is adequate to check if the two blocks are plane.

5. consider simple graphs

 If there exist loops or parallel edges, ignore them

6. produce uniform graphs without vertices of degree 2

 contract to homomorphic graph with smaller number of vertices

PLANARITY
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 Planarity Detection Algorithm (DMP)

• Algorithm of Demoucron, Malgrange, Peruiset 1964 (DMP)

• Strategy of DMP: find a sequence embeddible subgraphs (progressively larger),

starting from a circle and adding segments.

o Starting from the cycle, segments are created.

o For each segment we find the number of regions that it can be embedded.

o If a segment is embedded into only one region, then it has priority.

o In the case of a tie, we choose at random.

o The process is repeated at most 𝑚 − 𝑛 + 1 times.

PLANARITY
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 Planarity Detection Algorithm (DMP)

• Algorithm of Demoucron, Malgrange, Peruiset 1964 (DMP)

• Strategy of DMP: find a sequence embeddible subgraphs (progressively larger),

starting from a circle and adding segments.

o Starting from the cycle, segments are created.

o For each segment we find the number of regions that it can be embedded.

o If a segment is embedded into only one region, then it has priority.

o In the case of a tie, we choose at random.

o The process is repeated at most 𝑚 − 𝑛 + 1 times.

• The DMP algorithm has complexity 𝑂(𝑛4), however, there is also the Hopcroft-

Tarjan (1974) algorithm with 𝑂(𝑛) complexity which is based on DFS, but is complex.
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